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a b s t r a c t

Pan-sharpening is a technique to combine the fine spatial resolution panchromatic (PAN) band with the
coarse spatial resolution multispectral bands of the same satellite to create a fine spatial resolution mul-
tispectral image. In this paper, area-to-point regression kriging (ATPRK) is proposed for pan-sharpening.
ATPRK considers the PAN band as the covariate. Moreover, ATPRK is extended with a local approach,
called adaptive ATPRK (AATPRK), which fits a regression model using a local, non-stationary scheme such
that the regression coefficients change across the image. The two geostatistical approaches, ATPRK and
AATPRK, were compared to the 13 state-of-the-art pan-sharpening approaches summarized in Vivone
et al. (2015) in experiments on three separate datasets. ATPRK and AATPRK produced more accurate
pan-sharpened images than the 13 benchmark algorithms in all three experiments. Unlike the bench-
mark algorithms, the two geostatistical solutions precisely preserved the spectral properties of the orig-
inal coarse data. Furthermore, ATPRK can be enhanced by a local scheme in AATRPK, in cases where the
residuals from a global regression model are such that their spatial character varies locally.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Satellite sensors such as WorldView, QuickBird, IKONOS, SPOT
and Landsat ETM+ can acquire information about the same area
on the Earth’s surface at different spatial resolutions and in differ-
ent wavebands. For example, the WorldView multispectral sensor
can acquire images in eight bands with a spatial resolution of 2 m,
while the WorldView panchromatic (PAN) sensor can acquire a
single band image with a spatial resolution of 0.5 m. It is of great
interest to fuse such fine spatial resolution PAN band images with
coarse spatial resolution multispectral bands covering the same
area to generate a fine spatial resolution multispectral image.
Pan-sharpening is an image fusion technique developed for this
purpose. By taking full advantage of images in different wavebands
from the same satellite, pan-sharpened data are able to provide
more detailed land-cover/land-use (LCLU) information than the
original multispectral data.

Pan-sharpening has been a lively topic in the remote sensing
community and has motivated considerable research over the past
decades. Several reviews on pan-sharpening approaches exist
(Vivone et al., 2015; Pohl and Van Genderen, 1998; Wang et al.,
2005; Zhang and Mishra, 2014; Zhang, 2010). Vivone et al.
(2015) reviewed some widely used pan-sharpening algorithms
and categorized them into two main types, including component
substitution (CS) and multiresolution analysis (MRA). The core idea
of CS is to transform the original multispectral data into another
space and substitute one of the components with the PAN band.
Algorithms falling into this type include intensity-hue-saturation
(IHS) (Tu et al., 2001; Zhou et al., 2014), Brovey transformation
(Gillespie et al., 1987), principal component analysis (PCA)
(Shettigara, 1992), Gram-Schmidt (GS) transformation (Laben and
Brower, 2000), adaptive GS (GSA) (Aiazzi et al., 2007), and partial
replacement adaptive component substitution (PRACS) (Choi
et al., 2011). The MRA approach injects the spatial detail produced
by multiresolution decomposition of the PAN band. Common MRA
examples are high-pass filtering (HPF) (Chavez et al., 1991),
smoothing filter-based intensity modulation (SFIM) (Liu, 2000),
decimated wavelet transform using an additive injection model
(Indusion) (Khan et al., 2008), a trous wavelet transform (ATWT)
(Vivone et al., 2014), additive wavelet luminance proportional
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(AWLP) (Nunez et al., 1999), ATWT using the Model 2 (ATWT-M2)
(Ranchin and Wald, 2000) and Model 3 (ATWT-M3) (Ranchin and
Wald, 2000), generalized Laplacian pyramid (GLP) with modula-
tion transfer function (MTF)-matched filter (MTF-GLP) (Aiazzi
et al., 2006), and GLP with MTF-matched filter and multiplicative
injection model (MTF-GLP-HPM) (Lee and Lee, 2010). In addition,
sparse representation-based pan-sharpening approaches have also
received increasing attentions (Cheng et al., 2015).

Geostatistical solutions provide another family of approaches
for pan-sharpening. They have the significant advantage of pre-
serving the spectral properties of the observed coarse images: that
is, when upscaling the pan-sharpened image to the original coarse
spatial resolution, the result is identical to the original one, a prop-
erty referred to as perfect coherence. Pardo-Igúzquiza et al. (2006)
sharpened Landsat ETM+ images with downscaling cokriging
(DSCK), which treats each observed coarse band as the primary
variable and the PAN band as the secondary variable. DSCK was
extended with a spatially adaptive filtering scheme (Pardo-
Igúzquiza et al., 2006), in which the cokriging weights change
across the whole image. Tang et al. (2015) considered multiple-
point statistics as a post-processing step of DSCK to increase the
accuracy of pan-sharpening. Atkinson et al. (2008) extended the
DSCK approach to increase the spatial resolution of the multispec-
tral bands beyond that of any input images including the PAN
band. However, the one-stage DSCK approach requires complex
auto-semivariogram and cross-semivariogram modeling for each
coarse band, which makes it difficult to automate (Sales et al.,
2013).

Similarly to the issue defined for pan-sharpening, some other
geostatistical solutions were developed for fusing MODIS bands
1–2 and bands 3–7. Specifically, Sales et al. (2013) proposed a krig-
ing with external drift (KED) approach. KED requires only auto-
semivariogrammodeling for the observed coarse band and is easier
to implement than DSCK (Sales et al., 2013). KED, however, suffers
from expensive computational cost, as it computes kriging weights
locally for each fine pixel (Sales et al., 2013). The computing time is
related directly with the number of fine pixels to be predicted. In
view of this, in previous work (Wang et al., 2015), we proposed
an area-to-point regression kriging (ATPRK) approach for MODIS
image downscaling. ATPRK is faster than KED and more user-
friendly than DSCK. Moreover, ATPRK can incorporate readily other
additional data for possible enhancement.

The objective of fusing MODIS bands 1–2 and bands 3–7 is
physically different from that for pan-sharpening other data (e.g.,
very high resolution (VHR) images). First, MODIS bands 1–2 and
bands 3–7 are not acquired in the same spectral range, while the
PAN and corresponding multispectral bands of the satellite sensor
are almost in the same spectral range. Thus, the PAN band can, the-
oretically, provide more relevant fine spatial resolution informa-
tion for sharpening. Second, due to the differences in spatial
resolution, the spatial content in MODIS data is generally different
from that in Landsat and VHR images. The 500 m MODIS images
are commonly used for global monitoring of large scale LCLU infor-
mation, such as in relation to vegetation, water and snow cover.
The 2–4 m VHR images are used generally for local detection or
monitoring of small-sized LCLU objects of interest, including
impervious surfaces, urban objects, and military targets (such as
planes and ships).

In this paper, based on encouraging performance in relation to
MODIS image fusion (Wang et al., 2015) and its theoretical advan-
tages, ATPRK is proposed for pan-sharpening. ATPRK models the
overall trend in the target variables (i.e., fine spatial resolution pix-
els to be predicted) by regression of the primary variables (i.e.,
coarse spatial resolution bands to be downscaled) on a covariate
(i.e., the PAN band degraded to coarse spatial resolution) (Hengl
et al., 2004, 2007). Area-to-point kriging (ATPK) (Kyriakidis and

Yoo, 2005; Kyriakidis, 2004; Atkinson, 2013) is then performed
as the second step to downscale the coarse residuals from the
regression process, the output of which are finally added back to
the regression predictions to produce pan-sharpened images.

In Wang et al. (2015), the regression model was built using the
global image (i.e., all pixels in the coarse band and the PAN band)
and the regression coefficients were fixed for each coarse pixel.
However, the spatial structure of LCLU sometimes demands a
non-stationary model, that is, with parameters that vary spatially
(Wang et al., 2014). For example, in the studied image, some large
regions may be dominated by impervious surfaces in urban areas,
while some other large regions may be mainly covered by vegeta-
tion. The obvious difference in spectra of the LCLU classes will lead
to the requirement for non-stationary parameters and, thus, the
relationship between the coarse band and the PAN band may not
be sufficiently characterized by a single, global regression model.
To this end, a secondary objective of this paper was to extend
the recently developed ATPRK with a spatially adaptive scheme,
called adaptive ATPRK (AATPRK). AATPRK characterizes the rela-
tionship between each coarse band and the PAN band using the
local spatial structure and a regression model fitted on a per-
coarse pixel basis.

The contributions of this paper are, thus, threefold.

(1) A new geostatistical approach, ATPRK, is applied for pan-
sharpening VHR images for the first time. The problem of
pan-sharpening VHR images is an important one, is com-
monly encountered in remote sensing, and is different from
the fusion of medium spatial resolution images (e.g., MODIS
images), as mentioned above.

(2) A systematic comparison between ATPRK and the state-of-
the-art approaches to pan-sharpening, as introduced above.

(3) Extension of ATPRK with the proposed non-stationary spa-
tially adaptive scheme, that is, AATPRK.

The remainder of this paper is organized into four sections. Sec-
tion 2 introduces the principles of ATPRK and AATPRK in detail. In
Section 3, the experimental results for two WorldView-2 datasets
and one Landsat ETM+ dataset are provided to demonstrate the
applicability of ATPRK and AATPRK in pan-sharpening. Section 4
further discusses the proposed approach, followed by a conclusion
in Section 5.

2. Methods

Let Zl
CðxiÞ be the measurements (i.e., gray value) of pixel C cen-

tered at xi (i = 1, . . ., M, where M is the number of pixels) in coarse
band l (l = 1, . . ., B, where B is the number of bands), and ZF(xj) be
the measurements of pixel F centered at xj(j = 1, . . .,MG2, where G
is the spatial resolution (zoom) ratio between the coarse and PAN
bands) in the PAN band. The notations F and C denote the fine and
coarse pixels, respectively. The objective of pan-sharpening is to

predict target variables Zl
FðxÞ for all fine pixels in all B coarse bands.

2.1. ATPRK

ATPRK contains two steps: regression modeling and

ATPK-based residual downscaling. Suppose Ẑl
F1ðxÞ and Ẑl

F2ðxÞ
are predictions of the regression and ATPK parts, the ATPRK predic-
tion is

Ẑl
FðxÞ ¼ Ẑl

F1ðxÞ þ Ẑl
F2ðxÞ: ð1Þ

Details of the calculation processes are given in the following.
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