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a b s t r a c t

Data-driven approaches for the reconstruction of buildings feature the flexibility needed to capture
objects of arbitrary shape. To recognize man-made structures, geometric relations such as orthogonality
or parallelism have to be detected. These constraints are typically formulated as sets of multivariate poly-
nomials. For the enforcement of the constraints within an adjustment process, a set of independent and
consistent geometric constraints has to be determined. Gröbner bases are an ideal tool to identify such
sets exactly. A complete workflow for geometric reasoning is presented to obtain boundary representa-
tions of solids based on given point clouds. The constraints are formulated in homogeneous coordinates,
which results in simple polynomials suitable for the successful derivation of Gröbner bases for algebraic
reasoning. Strategies for the reduction of the algebraical complexity are presented. To enforce the con-
straints, an adjustment model is introduced, which is able to cope with homogeneous coordinates along
with their singular covariance matrices. The feasibility and the potential of the approach are demon-
strated by the analysis of a real data set.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

1.1. Motivation

Virtual city models are the base for many applications with geo-
metric questions such as flooding calculations, occlusion analysis
or the simulation of wave propagation. The model instances are
usually derived from uncertain point observations. Since these
point clouds contain no explicit representation of structure,
reverse engineering has to be applied to obtain as-built model
instances of man-made objects.

In general, reconstruction approaches are roughly categorized
as either model- or data-driven: ‘‘Model-driven approaches choose
configurable building blocks from a library of pre-defined tem-
plates, determine their roof shape parameters to best fit the given
data, and possibly combine them with other blocks to generate
more complex shapes. Pure data-driven approaches aggregate the
measured points to form higher-order primitives (usually planar
regions) and combine them to form surface models without any
shape restrictions” (Kada and Wichmann, 2013).

Data-driven approaches—such as the direct construction of
polyhedrons—feature the flexibility needed to capture objects of
arbitrary shape, unknown in advance. Unfortunately, the corre-
sponding procedures can be very complicated. Often they produce
non-planar faces and unaesthetic substructures (Haala and Kada,
2010).

The detection of regular structures and the enforcement of cor-
responding geometric constraints yields a ‘‘beautification”, conve-
nient for many visualization tasks. But the fact that established
model instances must feature topological consistency, complete-
ness, and integrity is more important (Mäntylä, 1987).

The constraints must be consistent and independent for consid-
eration within an adjustment process. Gröbner bases are the per-
fect tool to determine such sets. The challenge is to keep the
algebraic complexity low to obtain tolerable computing time and
memory consumption.

1.2. Related work

For a survey of the major approaches for Geometric Constraint
Solving, i.e., graph-based, logic-based, and algebraic methods,
please refer to Hoffmann and Joan-Arinyo (2005). General descrip-
tions of the concept of Gröbner bases are from a mathematical
point of view (Eisenbud, 1995) and from a more application-
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oriented point of view (Heck, 1996), whereas the construction of
the Gröbner bases leads back to the original work of Buchberger
et al. (1988).

The formulation of constraints as multivariate polynomials can
be found in Brenner (2005), for instance, where Gröbner bases are
used to analyze the interactive modification of constrained 2D
objects. In 3D, constraints for entities in homogeneous representa-
tion along with their covariance matrices are provided by Heuel
(2004). An adjustment model to solve constrained problems for-
mulated in homogeneous coordinates efficiently can be found in
Meidow (2014).

In the context of 3D building modeling, Rottensteiner et al.
(2005) use manually introduced constraints for the delineation of
planar roof patches within an adjustment. Pohl et al. (2013), use
a greedy algorithm to select a set of independent and consistent
constraints automatically. Decisions are made based on estimated
ranks and condition numbers, which leads to numerical problems
and inexact results for large-scale problems.

In Loch-Dehbi and Plümer (2011) and Loch-Dehbi and Plümer
(2009), independent constraints are found by automatic theorem
proving using Wu’s method (Wu, 1986). The feasibility is demon-
strated, but no real data sets have been analyzed.

1.3. Contribution

We present a complete work flow for reasoning based on uncer-
tain 3D point observations. This includes feature extraction by
grouping of points, the detection of geometric constraints for
man-made structures by hypotheses tests, the determination of
independent and consistent constraints by the utilization of
Gröbner bases, and the efficient enforcement of constraints found
in this manner. Boundary representations of solids are derived by
elaborated interaction of statistics, algebra, and numerical
optimization.

To formulate geometric constraints, we exploit the calculus of
projective geometry. The representation of geometric entities in
homogeneous coordinates leads to simple constraints with often
trivial Jacobians since the constraints are often bi-linear in the
parameters. For the relations, we generate and test hypotheses,
which avoids hardly interpretable thresholds.

The main contribution is the utilization of Gröbner bases to
exactly determine independent and consistent constraints. We dis-
cuss strategies to reduce algebraic complexity by rephrasing and
reasonably sequentially arranging the constraints.

To enforce the constraints, we introduce an adjustment model
which is able to cope with homogeneous coordinates along with
their singular covariance matrices. The size of the resulting normal
equation system depends on the number of constraints only.
Therefore, this optimization task can be solved efficiently.

The feasibility and usefulness of the approach, as well as some
limitations, are demonstrated by the evaluation of real data sets. In
doing so, we apply SINGULAR, a computer algebra system for polyno-
mial computations (Decker et al., 2012), which has been integrated
in our framework.

1.4. Outline and notation

1.4.1. Outline
This paper is organized as follows: After motivating the use of

projective geometry for our purposes in Section 2, we cover the
complete work flow for geometric reasoning. Hence, we restrict
our presentation to the consideration of planes. After describing
the grouping of 3D points and the estimation of corresponding
plane parameters in Section 3, we introduce geometric constraints
and present the hypotheses generation and verification in Sec-
tion 4. Section 5 treats the determination of sets of independent

and consistent constraints by computer algebra, exploiting the
concept of Gröbner bases. The results are then the starting point
for the overall adjustment of planes, which enforces the set of iden-
tified constraints (Section 6). Section 7 presents results of experi-
ments conducted using real data sets, and we close with a
summary and the conclusions in Section 8.

1.4.2. Notation
We distinguish between the name of a geometric entity denoted

by a calligraphic letter, e.g. for a point, and its representation. To
represent geometric entities, we use homogeneous vectors denoted
by upright boldface letters, e.g., a. Euclidean vectors and matrices
are denoted by slanted boldface letters, e.g., x or R. With homoge-
neous coordinates, ‘‘=” means an assignment or an equivalence up
to a scaling factor k– 0. With the skew-symmetric matrix SðxÞ
we express the cross product SðxÞy ¼ x� y of two vectors x and y.
The dot product is denoted by hx; yi ¼ xTy.

2. Representations and normalizations

Geometric constraint can easily be expressed by multivariate
polynomials. The algebraic complexity of these polynomials heav-
ily depends on the specific representation of the involved geomet-
ric entities. For algebraic reasoning and for subsequent numerical
optimization, we need both Euclidean and homogeneous represen-
tations. Since we are dealing with over-parametrizations, addi-
tional constraints or normalizations are needed to make these
entities unique.

2.1. Representations

A 3D point in Euclidean representation is a coordinate triplet
x ¼ ½x; y; z�T 2 R3. The homogeneous coordinates of a 3D point are
then elements of the 4-vector

x ¼ kx
k

� �
¼

kx

ky

kz

k

26664
37775 ¼

u

v
w

t

26664
37775 ð1Þ

subject to the constraint kxk2 ¼ u2 þ v2 þw2 þ t2 – 0 with k – 0.
A convenient representation of a plane is its normal vector n

with knk ¼ 1 and the signed distance d of the plane to the origin
of the coordinate system. The corresponding homogeneous vector
reads

a ¼ n
�d

� �
¼ ah

a0

� �
ð2Þ

with its homogeneous part ah and its Euclidean part a0.
The point-plane incidence

hx;ai ¼ xTa ¼ 0 ð3Þ
is the base of the estimation of plane parameter values a for a given
set of points. Furthermore, the formulation of the concurrence con-
straint for planes (explained below) is based on the dot product (3).

2.2. Spherical normalization

Given a 4-vector a representing a plane and its corresponding
4� 4 covariance matrix Raa, we obtain the spherical normalized
vector

a ¼ a
kak ð4Þ

and its covariance matrix
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