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a b s t r a c t

Measuring, Reporting and Verification (MRV) systems of the United Nations programme on Reducing
Emissions from Deforestation and forest Degradation (REDD+) aim to provide robust and reliable data
on carbon credits over large areas. Multitemporal satellite mosaics are often the only cost-effective
remote sensing data that allow such coverage. Although a number of methods for producing mosaics
has been proposed, most of them are dependent on the order in which tiles to normalized are presented
to the algorithm and suffer from loss of input scenes’ variance which can substantially reduce the carbon
credits. In this study we propose a variance-preserving mosaic (VPM) algorithm that considers all images
at the same time, minimizes overall error of the normalization and aims to preserve average variance of
input images. We have compared the presented method with a popular relative normalization algorithm
commonly used nowadays. The proposed algorithm allows to avoid iterative pair-wise normalization,
results in visually uniform mosaics while maintaining also the original image variance.
� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

In model-based estimation of geographical quantities based on
satellite images, regression models are built on normalized band
values of image pixels. There are many applications where not only
the fit of estimates to ground truthing is important, but also the fit-
ting of variance. One such application is the Measuring, Reporting
and Verification (MRV) of the United Nations programme on
Reducing Emissions from Deforestation and forest Degradation
(REDD+). REDD+ aims to create a financial value (carbon credits)
for the carbon stored in forests, especially those of developing
countries, in order to reduce greenhouse gas emissions.

One of the important steps within REDD+ is to develop a cost-
effective and accurate methodology for carbon monitoring over
large areas. Such methodology requires an approach that combines
together ground measurements and remote sensing technologies
(Angelsen, 2008). Possible remote sensing technologies that can
be employed are satellite imagery, LiDAR, aerial images and radar
data.

For REDD + MRV, satellite imagery has several advantages over
other remote sensing technologies. Firstly, satellites provide ‘‘wall-

to-wall’’ observations of the target area. Secondly, the price of
satellite images is considerably cheaper, and even more, some of
the satellite imageries, such as Landsat, can be acquired completely
free of charge. And lastly, satellites offer reliable historical data. For
instance Landsat delivers global images for the last four decades
(Gibbs et al., 2007).

Despite many benefits satellite imagery provides, there are
also challenges that should be addressed. One of them is radio-
metric differences between adjacent multitemporal scenes. Due
to variation in acquisition conditions (e.g. solar illumination,
atmospheric scattering and atmospheric absorption) the same
ground object on two overlapping images can result in different
spectral values (Yuan and Elvidge, 1996). Because of this, radio-
metrically uniform mosaics using multitemporal scenes should
be created before employing satellite imagery into carbon assess-
ment. Another challenge is the variance suppression that likely
occurs during mosaicing of multiple images, whenever it is based
on averaging pixel values of overlapping parts of images.
REDD + MRV’s credits are based on measuring the change in car-
bon captured in forests. If regression estimates for carbon capture
are built using satellite images, suppressing the true variance of
band values gets translated into suppression of change in carbon
captured, and hence into a reduction of the corresponding carbon
credit.
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To overcome radiometric differences between multitemporal
scenes there are two approaches commonly in use: absolute and
relative normalization (also called correction). The first one aims
to convert pixel intensity values to true surface reflectance using
in situ ground measurements of atmospheric properties. The main
disadvantage of the method is that it is very difficult and often not
possible at all to obtain atmospheric measurements (Du et al.,
2002). The second one (relative normalization) uses an assumption
of a linear relationship between overlapping regions of multitem-
poral images (Song et al., 2001). The linear relationship is con-
structed using pseudo-invariant features (PIFs) which represent
areas of temporally constant reflectance. Substantial research has
been done on this topic in past decades and researchers propose
various methods for automatic PIF identification, as well as for
modeling linear relationships (Hall et al., 1991; Yuan and Elvidge,
1996; Song et al., 2001; Du et al., 2002; Gibbs et al., 2007; Canty
and Nielsen, 2008; Zhang et al., 2008; Liu et al., 2012).

All proposed relative radiometric normalization methods are
following a common routine to normalize two scenes: identify
PIFs, run regression analysis on the overlapping region and apply
the coefficients found to the whole scene. If the mosaic needs to
be built for a large area that is covered by many satellite images,
the same routine is applied recursively pairwise, where a normal-
ized scene becomes the reference for the next one (Du et al., 2001;
Furby and Campbell, 2001; Olthof et al., 2005).

Such an approach raises several concerns. Firstly, the resulting
mosaic depends on the order of the normalization and may vary
significantly (Furby and Campbell, 2001). Secondly, due to the
recursive manner of the approach, error propagation brings a high
level of uncertainty (Olthof et al., 2005). Additionally, as regression
analysis is commonly used for the normalization step, a change
(loss or gain) in variance of the normalized image values is
expected. The change of variance over mosaic scenes will in turn
cause error to the forest parameters estimated from them (e.g. bio-
mass, height, etc.).

To resolve these problems, we propose variance-preserving
mosaic (VPM) algorithm that considers all images at the same
time, minimizes overall error of the normalization and aims to pre-
serve average variance of input scenes. In order to validate the pro-
posed method, we compute two independent mosaics – one using
an existing radiometric algorithm and the other one with the pro-
posed algorithm. We assess the mosaics by visual inspection, by
computing the variance of each scene, and by leave-one-out
cross-validation of the forest parameters estimated from them.

2. Study area and data

2.1. Study area

The study area is located over the Terai Arc Landscape (TAL),
along the foothills of the Himalayas in the southernmost part of
Nepal, with altitude ranging from less than 100 m up to 2200 m.
Influenced both by tropical and subtropical climate about half of
the study area is covered by subtropical mainly deciduous forests.
The dominating forest types are sal (Shorea robusta) terai mixed
hardwood, khair-sisau (Acacia catechu/Dalbergia sissoo) and chir-
pine (Pinus roxburghii). TAL is one of the priority landscapes in
Nepal, both for the conservation of its biodiversity and the protec-
tion of the ecological services (e.g. greenhouse gas mitigation, pur-
ification of air and water) it provides.

2.2. Ground-truth data

The field data consists of 738 plots (12.6-m radius) collected in
the spring of 2011. Systematic cluster sampling was used to design

the locations of sample plots. As this was done for the so-called
LAMP, or LiDAR-Assisted Multi-source Process for MRV, the plots
are clustered as in three-stage sampling. In the first stage, a set
of LiDAR blocks of 5000 hectars is randomly allocated over the
whole area. In the second stage, six plot clusters are assigned in
a systematic fashion on those blocks. In the third stage, eight circu-
lar sample plots are systematically placed within plot clusters.
Possible spatial correlation of ground truth data resulting from plot
clustering is ignored.

Diameter at breast height (DBH), height and species were mea-
sured for those trees in the plot that had DBH more than five
meters. The following forest attributes for each plot were then
derived from the tree-level measurements: stem count (1/ha),
mean diameter at breast height weighted by basal area (cm), basal
area (m2/ha), mean tree height weighted by basal area (m), stem
volume (m3/ha), and above-ground biomass (tons/ha). For more
detailed information about field measurements and equations in
use reader is referred to Gautam et al. (2013).

For applying the LAMP method, LiDAR data was collected from
about five percent of the whole study area in blocks. Each block
was scanned with full coverage from a height of 2200 m above
ground. Raw LiDAR data was classified into three categories:
ground returns, vegetation returns, and errors. Digital Terrain
Model was built from the ground returns and using it LiDAR data
was converted from absolute elevation into distance-to-ground.

Set of 10000 circular-shaped one hectare size ‘‘surrogate plots’’
were calculated using original field and LiDAR data. Forest attri-
butes were estimated for this set. Locations of the surrogate plots
were selected through weighted random sampling using the
inverse of the block weights applied in LiDAR block sampling
(Gautam et al., 2013).

2.3. Satellite imagery

Medium and high resolution satellite images were used in this
study, specifically Landsat 5 and RapidEye. The scenes were chosen
so that they have as little as possible clouds and are acquired in the
same growth season. All bands, but thermal infrared, were
employed in this study. Table 1 represents detailed information
on the images, and Fig. 1 depicts the location of the scenes over
the study area. As a pre-processing step clouds and snow were
identified within satellite scenes and masked out by setting their
pixel values to nodata.

3. Method

3.1. VPM method

We are given a set of images In; n ¼ 1; . . . ; N that should be
normalized in order to construct a uniform, variance-preserving
mosaic. Each image Ii overlaps at least one neighbor Ij. We will
define Iij as the subset of Ii corresponding to the no-change pixels
for the overlap with image Ij, and mij as the corresponding size of
Iij. The pixels can be identified as no-change ones in all pairwise
overlaps simultaneously using well established technique (e.g.
Canty and Nielsen, 2008). Obviously, mij is always equal to mji,
and mji is always zero when the images Ii and Ij do not overlap.

We can describe how different two neighbor images Ii and Ij are
by analyzing pixel values of their overlapped regions. We define
the squared difference dij as the measure of similarity between
two images over the same overlapped area:

dij ¼
Xmij

m¼1

ðpm � qmÞ
2
; ð1Þ

where pm and qm are pixel values of areas Iij and Iji respectively.
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