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a b s t r a c t

In this study, we propose an automatic detection algorithm for cloud/shadow on remote sensing optical
images. It is based on physical properties of clouds and shadows, namely for a cloud and its associated
shadow: both are connex objects of similar shape and area, and they are related by their relative locations.
We show that these properties can be formalized using Markov Random Field (MRF) framework at two
levels: one MRF over the pixel graph for connexity modelling, and one MRF over the graph of objects
(clouds and shadows) for their relationship modelling. Then, we show that, practically, having performed
an imagepre-processing step (channel inter-calibration) specific to clouddetection, the local optimization
of the proposed MRF models leads to a rather simple image processing algorithm involving only six
parameters. Using a 39 image database, performance is shown and discussed, in particular in comparison
with the Marked Point Process approach.

© 2009 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by
Elsevier B.V. All rights reserved.

1. Introduction

High resolution optical remote sensing images (such as
SPOT/HRVIR) are often affected by cloud presence. For surface
studies such as vegetation monitoring, change detection or
land cover/land use analysis, these clouds appear either as some
noise or some erroneous measurements that conceal or distort
the information corresponding to the surface. Moreover, even if
they represent only a small percentage of the scene surface, this
proportion may be not negligible with regard to the rate of the
studiedphenomena, such as the land cover change.Hence, even if it
is generally not possible to retrieve themissing data, it is important
to identify the clouds and their shadows in order to not consider
their signals on the studied area.
A large number of cloud detection methods have already been

proposed. However, these methods are generally dedicated to
data with spatial resolution of about one kilometer square, such
as the NOAA/AVHRR images. Indeed, these approaches are based
on the high temporal (Cihlar and Howarth, 1994) and spectral
(Rossow and Garder, 1993; Chen et al., 2002) resolutions of that
kind of data. Dealing with higher spatial resolution, the fourth
component of the ’Tasseled Cap’ transform (Kauth and Thomas,
1976) was found to be a good indicator of the presence of mist or
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clouds (Richter, 1996). However, this orthogonal transformation
of the spectral bands is not optimized for cloud detection, since
it was developed to distinguish the radiometric contribution of
vegetation from those of bare soil. Then, recent work (Zhang
et al., 2002) proposed an extension to derive a mist indicator
and perform pixel radiometric correction. Concerning the shadow
detection, different approaches have also been proposed. Some
are based on the projection of the cloud shapes on the surface
knowing the sun direction and the cloud altitude (Simpson and
Stitt, 1998). Other approaches exploit the matched filter concept
(Richter and Muller, 2005). The matched filter is then evaluated
using the spectral band covariance matrix. Once more when the
aim is the correction of the radiometric signal, previous methods
are exploited in collaboration with a radiative transfer model.
Finally, Ho and Zhenlei (1996) proposed comparing clouds and
shadows to perform mutual validation of their detections.
Our work exploits several of the previously presented ideas.

Theywere adapted and combined in order to derive a cloud/shadow
detectionmethodwhich is both robust and automatic. Relatively to
classical threshold techniques, the proposedmethod exploits three
main features of clouds (and shadows):

– P1: Clouds and shadows are connex objects;
– P2: Knowing the geometry of the acquisition and the sun
location, the image location of the shadow of a cloud is known,
but for one parameter (the cloud altitude);

– P3: Each cloud and its associated shadow have the same shape
and area (but for the deformations due to relief).
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In this study we show that these properties (P1, P2, and P3)
can be formalized using Markov Random Field (MRF) framework
at two levels: one MRF over the pixel graph for P1 modelling, and
oneMRF over the graph of objects (clouds and shadows) for P2 and
P3. In the case of the object MRF, the graph nodes represent the
objects, whereas the graph edges model the interactions between
objects. Hence, this approach assumes the a priori knowledge
of the number of objects and their interactions. Practically, this
implies an initial over-detection of clouds and shadows that
may have an impact on the final result. Therefore we have
compared our approach to amodel in which the number of objects
and relationships between objects may be a priori unknown,
namely the Marked Point Processes (MPP). However, this last
approach is alsomuchheavier in terms of optimization process and
computation time. Besides, since it uses a global optimization, it
demands the precise setting of themodel parameters, whereas the
local optimization of our first model (MRF) allows avoiding such a
fastidious process.
The rest of the article is organized as follows. Section 2 presents

the considered SPOT/HRVIR image features and database acquired
in the AMMA (African Monsoon Multidisciplinary Analysis)
program framework. Section 3 presents the model based on
MRF (whereas MPP main concepts and model are presented
in the Appendices). Section 4 describes the implementation of
our model, in particular specifying the used observation fields
(derived frommultispectral satellite measurements), the assumed
interactions (derived from acquisition and scene geometries) and
the algorithm. Section 5 shows the obtained results, and Section 6
gathers our conclusions.

2. Study context and database AMMA/SPOT

2.1. AMMA database

The important inter-annual variability of the monsoon in West
Africa is a phenomenon – with sometimes dramatic consequences
– known and observed for several decades. However, this vari-
ability still raises a large number of questions both about the
involved physical processes and about their social and economic
consequences. The research program AMMA (African Monsoon
Multidisciplinary Analysis) has hence two aims (Redelsperger
et al., 2006). On the one hand, it tries to improve the comprehen-
sion of themonsoon inWest Africa and its impact on the biosphere
both at global and at local scales. On the other hand, it looks for the
relationships between the climatic variability and the problems of
health, water resources and food safety.
AMMA includes four interacting scales of observations. The

larger one, the global scale, deals with the interactions between
monsoon phenomenon and the remainder of the Earth. The
monsoon process scale is the regional scale. The meso-scale
deals with the interactions between atmosphere and watershed
hydrology. At this scale, three study sites have been selected
within West Africa, namely the Ouémé watershed in Benin, the
Gourma one in Mali, and the Hapex square degree in Nigeria.
Finally, over each of these sites, some ‘super-sites’ have been
selected for studies and measurements at local scale studying the
impacts of the climate on agriculture and antropic activities and
the associated retroactions. At this scale, the characterization and
the monitoring of surface state from remote sensing data require
high spatial resolution sensors (pixel size of about few tens of
meters). This requirement is fulfilled by SPOT4/HRVIR images. The
whole database includes 39 SPOT/HRVIR scenes, whose acquisition
dates and places are given in Table 1.
Finally, for algorithm performance evaluation, some cloud

masks have been obtained by photointerpretation. In the lack of
more objective data, these masks have been used as ‘ground truth’
to estimate the performance of the proposed automatic image
processing method.

2.2. SPOT/HRVIR image features

The SPOT satellites, dedicated to the observation of the emerged
surfaces, have quasi-polar, circular and heliosynchronous orbits at
832 km altitude. The fourth one (SPOT4) has two identical optical
sensors HRVIR (High Resolution Visible and InfraRed on board),
having a 60 km swath and acquiring panchromatic ormultispectral
images. In this last acquisitionmode,measurements are performed
in four bands (corresponding to wavelengths from green, to mid-
infrared through red and near-infrared) with pixel size equal to
20× 20 m2.
As for any visible/infrared optical sensor, the acquired images

may be affected by the presence of clouds. We propose a generic
automatic cloud/shadow detection method. The proposed one
is generic and would be applicable to any image provided that
the basic assumptions (P1, P2, and P3) are valid. First, note that
the separation of clouds (respectively shadows, respectively mist)
from the remainder of the image is a non-trivial problem in most
application cases. In particular, it is generally not possible to
determine a decision threshold by simple analysis of the image
histogram. Fig. 1 points out this difficulty. It compares, for each
of the four spectral bands, the histograms of the pixels of soil
and those of clouds in the case of a typical scene (extracted
from the image acquired at 04/29/2006 over Benin). Whatever the
spectral band, there is an important overlapping between soil and
cloud histograms, inducing important rates of false alarms or mis-
detection regardless of the chosen threshold value. The only case
where a threshold approach would be efficient is when the images
only present completely opaque clouds. Besides, note that, even
in this case, the threshold value can generally not be obtained
from image histogram analysis because the cloud pixels are minor
relative to the soil pixels.

3. Markov Random Field modelling

In this section, we recall the main concepts of the Markov
Random Fields (MRF). We also introduce the notations used in
the following sections. In the following section the general model
is presented whereas its practical implementation described in
Section 4.
MRFs are widely used in image processing (Abend et al., 1965;

Geman and Geman, 1984) providing a solution to the causality
problem. Nowadays, research is still active in this domain. Some
work has focused on the development of efficient optimization
techniques, in particular using graph cut methods (Boykov et al.,
2001; Boykov and Kolmogorov, 2004; Kolmogorov and Zabih,
2004). Someother approaches aimat consideringmodelsmore and
more flexible, in particular relaxing the stationarity assumption
of the image (Benboudjema and Pieczynski, 2005; Pieczynski and
Benboudjema, 2006; Le Hégarat-Mascle et al., 2007), or models at
higher level, in particular using MRF to model the relationships
between image objects (Descombes, 2004).

3.1. Markov fields over graphs

Let G be a non-oriented graph. We assume that the edges of
G define a neighbourhood system where Vs is the neighbourhood
associated to node s, i.e. a set of nodes all having an edge toward s
and checking t ∈ Vs ⇔ s ∈ Vt . The cliques c associated to Vs are
defined as the union of some subsets of Vs and s such that a clique is
a complete subgraph of G (constituted by 2 × 2 nodes considered
to be neighbours; for example, Fig. 2 shows the possible cliques
containing a pixel s, in 8-connexity over the pixel graph). Then, C
denotes the set of cliques c over G.
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