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a b s t r a c t

Large area forest inventory is important for understanding andmanaging forest resources and ecosystems.
Remote sensing, the Global Positioning System (GPS), and geographic information systems (GIS) provide
new opportunities for forest inventory. This paper develops a new systematic geostatistical approach for
predicting forest parameters, using integrated Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images,
GPS, and GIS. Forest parameters, such as basal area, height, health conditions, biomass, or carbon, can be
incorporated as a response variable, and the geostatistical approach can be used to predict parameter
values for uninventoried points. Using basal area as the response and Landsat ETM+ images of pine stands
in Georgia as auxiliary data, this approach includes univariate kriging (ordinary kriging and universal
kriging) andmultivariable kriging (co-kriging and regression kriging). The combination of bands 4, 3, and
2, as well as the combination of bands 5, 4, and 3, normalized difference vegetation index (NDVI), and
principal components (PCs) were used in this study with co-kriging and regression kriging. Validation
based on 200 randomly sampling points withheld field inventory was computed to evaluate the kriging
performance and demonstrated that band combination 543 performed better than band combination 432,
NDVI, and PCs. Regression kriging resulted in the smallest errors and the highest R-squared indicating the
best geostatistical method for spatial predictions of pine basal area.

© 2008 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by
Elsevier B.V. All rights reserved.

1. Introduction

Large area forest inventories generally are based on field plot
sampling, and small area forest inventories usually are processed
forest stand units. These two traditional inventories can be
integrated by combining ground inventorywith Global Positioning
System (GPS) and remote sensing data and processing them in
geographical information systems (GIS). It is now relatively easy
to measure the locations of survey plots, forest stands, and stand
boundaries in the field with accuracy of within three meters using
differential GPS.
Developments in sensor technology also have allowed the

acquisition of remotely sensed data at a range of scales. Remote
sensing data are available from satellite sensors providing images
with medium spatial resolution of 20–30 m (e.g., Landsat TM,
Landsat ETM+, SPOTHRVIR) aswell as high spatial resolution of less
than 5 m (e.g., Ikonos, QuickBird, LIDAR, and others). Integration
of geospatial technologies allows achievements in forest metrics
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using image data with cell sizes of 30 m, 20 m, 10 m, 5 m, 1 m,
or 0.5 m. These forest metrics can be estimated from remote
sensing data by modeling the relationships between the image’s
digital numbers and the forest variables inventoried on the ground
with GPS. Geographic information systems and spatial modeling
are efficient tools to model, estimate, map, and predict spatial
characteristics of stands or trees.
Generally, there are two ways to predict fine scale spatial

forest information, nonspatial modeling and spatial modeling.
Nonspatial modeling methods widely applied in forest research
with linear and nonlinear regressions are the common models
applied for estimations of forest variables (Ardö, 1992; Trotter
et al., 1997; Dungan, 1998; Cohen et al., 2003; Hudak et al.,
2006;Masellj and Chiesi, 2006;Muukkonen and Heiskanen, 2007).
K nearest neighbor (KNN) methods for achieving forest metrics
using remote sensing data have been applied for forest inventories
(Tomppo, 1991; Moeur and Stage, 1995; Franco-Lopez et al., 2001;
Holmström and Fransson, 2003; Masellj and Chiesi, 2006; Meng
et al., 2007). Artificial neural networks (ANN) also are used for
estimating forest variables using remote sensing data (Foody and
Boyd, 1999; Foody, 2000; Tatem et al., 2001; Chudamani et al.,
2006).
Using the data from Landsat and SPOT as predictors, Tokola

et al. (1996) applied both linear regression and the KNN method
on forests in the southern boreal vegetation zone in Finland.
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Fig. 1. The study area includes 20 counties (b) in the United States of America (a). The ground inventory locations are indicated as dark points in B.

The authors reported standard errors of stem volume prediction
from 70 to 80 m3/ha (more than 60% of the mean) at the plot
level. Trotter et al. (1997) used ordinary least squares to predict
stem volume of mature plantations in New Zealand and reported
a root mean square error (RMSE) greater than 100 m3/ha (with
a mean stem volume of 413 m3/ha) for pixel predictions. Using
a combination of SPOT 4 and low frequency radar data from
the airborne CARABAS system, Holmström and Fransson (2003)
applied KNN method to predict forest variables and reported
RMSE of 64% (of the mean) of stem volume using optical data
and of 53% using the combination of optical and radar data.
The stem volume of the sample plots (10 m radius) was in the
range of 0–750 m3/ha with a mean value of 171 m3/ha. Using
Landsat ETM+ data and comparing ANN, multiple linear regression
and maximum likelihood classification, Chudamani et al. (2006)
concluded that linear regression performed significantly worse
than other methods for characterizing forest canopy density.
Many studies have conducted spatial predictions based on

remotely sensed data (Curran, 1988; Atkinson et al., 1994; Dungan
et al., 1994; Lark, 1996; Dungan, 1998; Curran and Atkinson,
1998; Addink and Stein, 1999; Atkinson and Lewis, 2000; Chica-
Olmo and Abarca-Hernandez, 2000). Few studies have been
conducted on estimations of forestry relevant variables using
spatial models, although a large number of spatial-statistical and
prediction models are available in the literature (e.g. Cressie
(1993), Wackernagel (1994), Odeh et al. (1995), Goovaerts (1997)
and Odeh and McBratnery (2000). Masellj and Chiesi (2006),
Buddenbaum et al. (2005), Berterretche et al. (2005), Tuominen
et al. (2003), and Zhang et al. (2004) applied geostatistical models
to estimate forest variables, such as leaf area index, and to classify
forest lands based on remote sensing data. Gilbert and Lowell
(1997) used kriging to predict stem volume in a 1500 ha balsam fir
(Abies balsamea) dominated forest. Prediction based on 5.6 m and
11.3 m radius plots resulted in a RMSE of 54% (of the mean) and
39%–46%, respectively. Methodologically, the accuracy rate of the
predicted variable could be improved by incorporating close field
observations as predictors in spatial modeling.
In addition to analyzing spatial characteristics of GIS-integrated

ground and remote sensing data, it is also necessary to analyze
nonspatial data, for example, the selection of band combinations
and data reduction of remotely sensed imagery. What is the asso-
ciation between the response variable and independent variables
(i.e., the remotely sensed data)? Distribution tests may be needed,

Fig. 2. One example of a field plot.

although the derivation of kriging equations does not depend on
any distributional assumptions. Correlation diagnostics are impor-
tant formultivariable geostatistics and variogrammodels are often
fitted to check spatial autocorrelation and dependence. Cross var-
iograms need fitting if multivariable geostatistical approaches are
conducted. Additionally, it is important to check whether a spa-
tial trend exists in the data of the response variable. Both universal
kriging and regression kriging are efficient to incorporate the trend
in geostatistical predictions.

2. Data sources

2.1. Ground data

Ground data covering 20 counties in west Georgia (USA) were
inventoried in 1999 (Fig. 1) by private timber companies. The
locations of these ground data were collected using differential
Global Positioning System (DGPS) units with accuracywithin three
meters. One example of a field plot composed of sixteen fixed-
radius subplots is indicated in Fig. 2. The radius for the subplots
in a given plot was fixed and dependent on the density of a given
stand, but the specific distributions of the plots in the study area
cannot be given in detail because of the business confidentiality.
The coordinates of the grounddatawere converted to theUniversal
Transverse Mercator ground coordinate system to match those of
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