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a b s t r a c t

Immunotoxicity, defined as adverse effects of xenobiotics on the immune system, is gaining increasing
attention in the approval process of industrial chemicals and drugs. In-vivo and ex-vivo experiments
have been the gold standard in immunotoxicity assessment so far, so the development of in-vitro and in-
silico alternatives is an important issue.

In this paper we describe a widely applicable, easy-to use computational approach which can serve as
an initial immunotoxicity screen of new chemical entities. Molecular fingerprints describing chemical
structure were used as parameters in a machine-learning approach based on the Naïve-Bayes learning
algorithm.

The model was trained using blood-cell growth inhibition data from the NCI database and validated
externally with several in-house and literature-derived data sets tested in cytotoxicity assays on different
types on immune cells. Both cross-validations and external validations resulted in areas under the
receiver operator curves (ROC/AUC) of 75% or higher.

The classification of the validation data sets occurred with excellent specificities and fair to excellent
selectivities, depending on the data set. This means that the probability of actual immunotoxicity is very
high for compounds classified as immunotoxic, while the fraction of false negative predictions might
vary. Thus, in a multistep immunotoxicity screening scheme, the classification as immunotoxic can be
accepted without additional confirmation, while compounds classified as not immunotoxic will have to
be subjected to further investigation.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Immunotoxicity, defined as the adverse effects of xenobiotics
(immunotoxicants) on the immune system includes two main
types: immunosuppression (decreased immunocompetence) and
inappropriate immunostimulation. An altered immune function
can have various effects, ranging from increased incidence/severity
of infections or tumors to hypersensitivity/autoimmune reactions
and allergies. The term “immunotoxicants” is used to refer to both
natural and synthetic compounds of various origins and applica-
tions, such as food products, food additives, and environmental
pollutants, which may be either pharmaceuticals or other chem-
icals. Identifying immunotoxicants is an important but difficult

task. In particular, reducing the need for animal experiments
wherever possible is a major consideration. It has been suggested
that these issues can be solved by developing appropriate in vitro
assays and in silico methods and combining them in a decision-
tree-like manner (Combes et al., 2008; Macela et al., 1989).

Computer-based (in silico) toxicity prediction has been the topic
of research for more than 20 years (Hansch et al., 1995; Muster
et al., 2008). However, when it comes to immunotoxicity, most of
the commercial software packages such as DEREK (Barratt and
Langowski, 1999; Zinke et al., 2002) and TOPKAT (Enslein et al.,
1990) and published in silico methods focus on skin or respiratory
sensitization (Karol et al., 1996) or on the interaction with one
specific protein (Turabekova et al., 2014; Yuan et al., 2013) Only the
HazardExpert package (Smithing and Darvas, 1992), a knowledge
rule-based expert system, includes an immunotoxicity endpoint.

One promising in silico approach to predicting general immu-
notoxicity for a wide range of chemical substances is based on the
assumption and observation that similar molecules exhibit similar
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biological effects. Various biological problems such as the predic-
tion of targets (Campillos et al., 2008), therapeutic indications
(Nickel et al., 2014) and side effects (Lounkine et al., 2012) could be
successfully solved using similarity-based approaches.

In combination with machine-learning methods such as k-
nearest neighbors, naïve Bayes models, support vector machines,
random forests or ensembles of different classification methods,
molecular similarity defined by the molecular structure and prop-
erties can be used to screen new chemical entities virtually, e.g. for
various toxicological endpoints (Drwal et al., 2014; Gadaleta et al.,
2014; Li et al., 2014; Liu et al., 2015). Drwal et al. ranked among
the top submissions in the Tox21 challenge using a combination of
three fingerprints representing the 2D molecular structure and a
naïve Bayes predictor (Drwal et al., 2015).

Herewe introduce a similar approach based on the combination
of two molecular fingerprints describing structural features of the
molecules in which we test the working hypothesis that immu-
notoxicity can be estimated from immune cell cytotoxicity.

The training sets were built from B- and T-cell growth inhibition
data of ca 45,000 compounds taken from the National Cancer In-
stitute's (NCI) data base. This is the largest publicly available dataset
for cytotoxic effects of chemicals containing more than 265,000
compounds and data on growth inhibition in more than 60 human
cell lines, including one B-cell and 2 T-cell lines.

Our models were evaluated using one in-house set containing
chemical compounds with known immunosuppressive, immu-
nostimulating, immunomodulatory or allergenic properties, and
three data sets compiled from the literature. We demonstrate the
applicability of the models in predicting the results of different
experimental setups evaluating immunotoxicity.

2. Methods

2.1. Computational methods

2.1.1. Data sets
2.1.1.1. Training data. The U.S. National Cancer Institute's (NCI)
public database was used to build predictive models for immune
cell cytotoxicity. Growth inhibition data were downloaded from
https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-
60þGrowthþInhibitionþData and linked to molecular structures
downloaded from http://cactus.nci.nih.gov/download/nci/index.
html. Growth inhibition was determined by the NCI using the sul-
forhodamine B cytotoxicity assay and is given in form of GI50 values,
which describe the drug concentration resulting in a 50% reduction
of the net protein increase as compared to a control experiment.

The NCI database was filtered to include only measurements
given in the molar unit and, in cases where multiple concentration
ranges had been tested, the lowest was kept. GI50 values from three
different cell lines were investigated, the B-cell line RPMI-8226 and
the two T-cell lines MOLT-4 and CCRF-CEM. Compounds with GI50
values below 10 mM were defined as toxic. In the case of T-cells,
compounds were defined as active or inactive only if their GI50
values were below or above 10 mM in both cell lines. Compounds
with inconclusive results from the two cell lines were discarded. As
a third, “immunotoxic” property was defined for compounds
showing either B-cell or T-cell activity according to the definition
given above. This approach afforded a total of 47 565 compounds
whichwere subjected to further filtering and preparation steps (see
Section “Data Preparation”).

2.1.1.2. External validation data. To determine the goodness of the
predictive model, we used four data sets, one obtained in-house
and three from the literature. Each compound data set was asso-
ciated with activity data from two or three different assays. Two

smaller datasets (in-house and Markovic) consisted of manually
selected immunotoxic and inert compounds, while different sub-
sets of compounds included in the Acutoxbase (Kinsner-
Ovaskainen et al., 2009) were used for the two larger data sets
(Sj€ostr€om and Kooijman).

2.1.1.3. In-house Jurkat, THP1, and PBMC data sets. The cytotoxic
activity on immune cells was determined for 14 selected com-
pounds (Table 1, Fig. S1) using a MTT cytotoxicity assay on Jurkat,
THP-1, and peripheral blood mononuclear cells (see the Cytotox-
icity Assays section for details).

2.1.1.4. Markovic PBMC and LCL data sets (Markovi�c et al., 2014).
This data set contained cytotoxicity values from two different cell
lines e peripheral blood mononuclear cells (PMBCs) and lympho-
blastoid cell lines (LCLs) e and consisted of seven compounds.

2.1.1.5. Sj€ostr€om NRU and estimated LC50 data sets (Sj€ostr€om et al.,
2008). The activity data included a 3T3 NRU cytotoxicity assay,
which measures the 50% inhibition (IC50) of dye-neutral red uptake
in the lysosomes (90 compounds), and human 50% lethal concen-
trations (LC50) estimated using time-related human sub-lethal and
lethal blood concentrations from the Acutoxbase (80 compounds).

2.1.1.6. Kooijman TNFalpha, IFNgamma, and IL-5 data sets (Kooijman
et al., 2010). Three different cytokine assays, that measure the
(IC50) of cytokine production by cultured human PBMCs stimulated
with phytohaemagglutinin (PHA) (58 compounds).

2.1.2. Data preparation
Compound structures were standardized using JChem version

15.10.26.0 (Chemaxon) with the following settings: Water and salts
were removed, explicit hydrogens were added, structures were
aromatized and their three-dimensional coordinates were cleaned.
Canonical smiles and InChIKeys were calculated using Discovery
Studio 4.1 (BIOVIA).

In the training set, Duplicates were identified based on canon-
ical smiles and eliminated.

This approach afforded 44 615 compounds in the “immuno-
toxic” training set and 41 883, or 37 198 compounds in the B-cell,
and T-cell training set, respectively.

2.1.3. Calculation and concatenation of molecular fingerprints
Different fingerprints were calculated for each compound for

use as a feature input for the predictive model and in determining
the best fingerprint for cytotoxicity predictions on immune cells.
Various molecular fingerprints (Morgan, FeatMorgan, RDKit
fingerprint, Layered, AtomPair, Torsion, Avalon, MACCS keys) were
calculated with KNIME analytics platform 2. 12. 0 (KNIME.com AG,
Switzerland) using RDKit Nodes (http://www.rdkit.org) and Tox-
Print fingerprints (Yang et al., 2015) were calculated using the
ChemoTyper software (https://chemotyper.org/). Combinations of
fingerprints were created by concatenating two RDKit fingerprints
or concatenating the ToxPrint fingerprint with one RDKit finger-
print. All RDKit fingerprints with different parameters and all
possible combinations of fingerprints with optimized parameters
were built, resulting in bit lengths of 1024 or 2048 for the RDKit
fingerprints, 729 for the ToxPrint fingerprint, and 1753 or 2777 for
the combinations.

2.1.4. Model development and validation
For immunotoxicity prediction based on RDKit and ToxPrint

fingerprints, models were built applying the Naïve Bayes algorithm
(Nidhi et al., 2006) using the Fingerprint Naïve Bayes Nodes
implemented in the KNIME Analytics Platform.
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