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a b s t r a c t

DEM matching is a technique to match two surfaces or two DEMs, at different reference frames. It was
originally proposed to replace the need of ground control points for absolute orientation of perspective
images. This paper examines DEM matching for precise mapping of pushbroom images without ground
control points. We proved that DEM matching based on 3D similarity transformation can be used when
model errors are only on the platform’s position and attitude biases. We also proposed how to estimate
bias errors and how to update rigorous pushbroom sensor models from DEM matching results. We used a
SPOT-5 stereo pair at ground sampling distance of 2.5 m and a reference DEM dataset at grid spacing of
30 m and showed that rigorous pushbroom models with accuracy better than twice of the ground sam-
pling distance both in image and object space have been achieved through DEM matching. We showed
further that DEM matching based on 3D similarity transformation may not work for pushbroom images
with drift or drift rate errors. We discussed the effects of DEM outliers on DEM matching and automated
removal of outliers. The major contribution of this paper is that we validate DEM matching, theoretically
and experimentally, for estimating position and attitude biases and for establishing rigorous sensor mod-
els for pushbroom images.
� 2011 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Since the public release of high resolution satellite images, they
have become one of the most popular and powerful data sources to
study the earth surface. They are now offering the resolving power
comparable to aerial images. GeoEye-1, for example, delivers
images at the ground sampling distance (GSD) of 0.5 m (Fraser
and Ravanbakhsh, 2009). To retrieve precise positional information
from images at such a fine GSD, one needs to establish very accu-
rate geometric relationship between the image and the object
space. In general, the geometric relationship for satellite images
is explained by two types of sensor models: rigorous sensor model
and generalized sensor model. For both types, the metadata pro-
vides the necessary information for sensor modelling. For the first
type, the metadata contains the platform’s ephemeris and attitude
information so that the model based on physical parameters can be
established (Salamonowicz, 1986; Westin, 1990; Radhadevi et al.,
1998; Kim and Dowman, 2006). For example, the metadata of
SPOT-5 images include look angles of detector cells, position and
velocity vectors of the satellite, and attitude rates in pitch, roll
and yaw axes (SPOT Image, 2002). For the second type, the meta-
data provides coefficients of pre-defined equations so that the sen-
sor model can be established directly. For example, IKONOS and
GeoEye-1 are providing rational polynomial coefficients (RPCs) to

construct rational function models (Grodecki and Dial, 2003; Fraser
et al., 2006; Fraser and Ravanbakhsh, 2009).

For both types, the sensor models constructed from the metada-
ta alone do not meet accuracy requirements of large scale map-
ping. This is due to the limited accuracy of various on-board
sensors such as GPS receivers, star sensors and gyroscopes. To im-
prove the accuracy, one usually hires ground control points (GCPs),
the points with known ground coordinates, and their correspond-
ing image points. For rigorous sensor models, the platform’s
ephemeris and attitude errors were modelled by polynomial equa-
tions and coefficients of the error equations were estimated by
GCPs (Gugan and Dowman, 1988; Chen and Lee, 1993; Orun and
Natarajan, 1994; Radhadevi et al., 1998). There are studies re-
ported on the effect of different polynomial equations and on
how to determine the type of polynomial equations (Orun and Nat-
arajan, 1994; Kim et al., 2007). For rational function models, error
compensation equations were defined at the image space and coef-
ficients of the compensation equations were estimated by GCPs
(Grodecki and Dial, 2003; Fraser et al., 2006; Fraser and Rav-
anbakhsh, 2009). For example, 2D affine transformation was sug-
gested to compensate bias errors caused within IKONOS satellites
(Grodecki and Dial, 2003). Others reported that 2D affine transfor-
mation had been sufficient for bias compensation of most high res-
olution satellite images (Fraser et al., 2006).

However, the use of GCPs makes the overall application costly
and time consuming. Moreover, there are areas or situations where
GCPs of sufficient accuracy cannot be retrieved (Heipke et al., 2004).
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Due to these reasons, various ways to alleviate the necessity of GCPs
have been explored (Heipke, 1997). Previously acquired GCPs were
maintained and reused to solve the geometric relationship of new
images (Kim and Im, 2003). More advanced position and angular
sensors were installed on aerial or satellite platforms to provide
accurate orientation information (Heipke, 1997). Existing orthoim-
age and elevation dataset were used to extract ground control points
in an automated manner (Gianinetto and Scaioni, 2008). In this pa-
per, we aim to use existing digital elevation models (DEMs) for pre-
cise sensor modelling of high resolution satellite images.

DEM matching is a technique to match two surfaces, or two
DEMs, at different reference frames. DEM matching was originally
proposed to replace the need of GCPs for absolute orientation of
perspective images (Rosenholm and Torlegard, 1988; Ebner and
Strunz, 1988) and had been demonstrated so (Rosenholm and Tor-
legard, 1988; Ebner and Ohlhof, 1994). The relationship between
relative and absolute frames was modelled by 3D similarity trans-
formation and DEM matching was applied to find parameters of
the 3D similarity transformation (Rosenholm and Torlegard,
1988; Ebner and Ohlhof, 1994). DEM matching was further ex-
tended to 3D surface matching to solve the problem of 3D object
registration (Gruen and Akca, 2005). DEM matching for pushbroom
images was also suggested (Ebner et al., 1991). It was applied to
pushbroom images taken by Mars Express (Heipke et al., 2004)
and to Cartosat-1 images (d’Angelo et al., 2009). However, the
validity of DEM matching for pushbroom images has not been
investigated thoroughly. For example, the transformation between
the relative and absolute frames for pushbroom images was mod-
elled as that of perspective images (Heipke et al., 2004) or as 3D af-
fine transformation (d’Angelo et al., 2009). Theoretical justification
for the use of such transformations, however, was not provided.

Our purpose is to validate DEM matching, theoretically and
experimentally, for solving absolute orientation of satellite images
with pushbroom geometry. In particular, we aim to validate DEM
matching for estimating the platform’s position and attitude bias
errors and for establishing accurate rigorous pushbroom sensor
models without GCPs. DEM matching in our case is still challenging.
DEM matching has not been applied to pushbroom images with rig-
orous sensor models. We have to find out the relationship between
DEM matching and bias compensation of rigorous pushbroom sen-
sor models. We have to analyze the effects of the platform’s ephem-
eris and attitude variation over time on the quality of DEM
matching. Besides, the resolution difference between images and
the DEMs and the accuracy of the DEMs have to be considered.

We start our discussion by introducing the original DEM match-
ing proposed for perspective images. We re-interpret perspective
sensor models and validate the 3D similarity transformation used
in the original DEM matching. We will advance our discussion to
DEM matching for pushbroom sensors. We will re-interpret rigor-
ous pushbroom sensor models for derivation of the true relation-
ship between relative and absolute frames of pushbroom images.
The relationship depends on the nature of errors of rigorous push-
broom sensor models. Unlike perspective images, 3D similarity
transformation is not suitable for pushbroom images in general.
We will further show that 3D similarity transformation can repre-
sent the relationship when the errors are on the platform’s position
and attitude biases. We will also propose how to update rigorous
pushbroom sensor models from DEM matching results.

2. DEM matching for perspective images

Firstly, we explain DEM matching for perspective images
proposed by Rosenholm and Torlegard (1988). The relationship
between two DEMs was defined by 3D similarity transformation
as below,
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where (X, Y, Z) is the coordinates of a 3D point in an absolute frame
(or in an absolute DEM), (x, y, z) the coordinates of a 3D point in a
relative frame (or in a relative DEM), R a rotation matrix,
(DX, DY, DZ) a shift vector between the two DEMs and s a scale fac-
tor. Let (xk, yk, zk) be the kth point in the relative DEM and
ðX̂k; Ŷk; ẐkÞ the estimate of the kth point in the absolute DEM using
the above transformation. The height difference vk between the
estimate and the actual point on the absolute DEM is

vk ¼ Ĥk � HðX̂k; ŶkÞ; ð2Þ

where Ĥk is the height estimate of the kth point and HðX̂k; ŶkÞ is the
height of a point ðX̂k; ŶkÞ on an absolute DEM. Fig. 1 illustrates the
relationship among a 3D point in a relative frame, its estimate
and the actual location in an absolute frame, and the height
difference.

DEM matching is the problem of adjusting the parameters of
the above 3D similarity transformation; s, DX, DY, DZ and rotation
angles for R to minimize the sum of squares of height differences.
This is a non-linear adjustment problem. If Z axis in Eq. (1) corre-
sponds to the height axis, the equation is linearized as below,

vk ¼ Ĥk � HðX̂k; ŶkÞ þ dZk �
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where dX, dY, and dZ are calculated from Eq. (1).
The use of 3D similarity transformation, as shown in Eq. (1), is

justified by the following considerations. Let Eq. (4) be a sensor
model based on the collinear condition between a look vector
(dx, dy, dz) in the sensor frame, and the vector connecting a 3D point
(x, y, z) and the platform position (xS, yS, zS) in a relative frame.
Rrel

sensor represents the rotation from the sensor frame to the relative
frame and k a scale factor. The simplest form of Eq. (4) will be when
the relative frame coincides with the sensor frame and hence when
(xS, yS, zS) is a null vector and Rrel

sensor an identity matrix.
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If Eq. (4) is updated to relate the look vector (dx, dy, dz) with the vec-
tor connecting a 3D point (X, Y, Z) and the new platform position
(XS, YS, ZS) in an absolute frame, we can have Eq. (5). Rabs

sensor repre-
sents the rotation from the sensor frame to the absolute frame
and k0 a new scale factor.
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From Eqs. (4) and (5), we can easily derive Eq. (1). We can con-
clude that for perspective images the relationship between a rela-
tive and an absolute frame is represented by 3D similarity
transformation as far as the collinear equations in Eqs. (4), (5) hold.

3. DEM matching for pushbroom sensors

We now extend our discussion for pushbroom images. In Eq. (6)
one form of rigorous sensor models for pushbroom images using
satellite orbit and attitude parameters is presented (Kim and Dow-
man, 2006). In the model, (dx, dy, dz) is a look vector at the sensor
frame, (x, y, z) a 3D point and (xS, yS, zS) the platform position.
Rorbit

sensor represents the rotation from the sensor frame to the orbit
reference frame. For most of satellite images, this matrix can be
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