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Abstract

True replacement sensor models, or TRSM, are those based on construction of dense object—image grids using the rigorous
physical sensor model. Photogrammetric exploitation of image sensing applies the TRSMs since, like the physical models, they
possess the same three important characteristics: (1) Accurate ground-to-image function; (2) Rigorous error propagation that is
essentially of the same accuracy as the physical model; and, (3) Adjustability, or the ability to upgrade the TRSM parameters when
additional control information becomes available after replacing the physical model. The ground-to-image functions are commonly
achieved via fitting rational polynomial coefficients, RPC, to the dense grids which encompass the entire ground volume covered
by the image under consideration. A novel approach for rigorous error propagation, without using added parameters, has been
developed at Purdue University. The approach resolves the problem of rank deficiency of the covariance matrix associated with
RPC by theeigen-values and eigen-vectors approach. This paper summarizes the new approach and presents further development to
address the adjustability characteristic. Results from its application to imagery from an aerial frame camera, an airborne pushbroom
sensor, and a spaceborne linear array sensor, are presented for both simulated as well as real image data. The results show
essentially negligible differences when compared to those from the rigorous physical sensor models.
© 2007 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
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1. Introduction

Image sensing remotely acquired from aircraft and
spacecraft is a primary data acquisition for spatial in-
formation. Associated with the image is a physical/
geometrical model which provides the mathematics
for photogrammetric analysis including: 1) computing
carth-related coordinates of the real objects from image
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measurements, and vice-versa, 2) determining stochastic
characteristics of the computed coordinates, which is
referred to as error propagation, and 3) upgrading the a
priori available model parameters using additional
control information, which we call model adjustability.
The collinearity equation is the most commonly used
form as the fundamental relationship for different types
of passive sensors, including frame cameras (areal
sensors), pushbroom sensors (linear sensors), and
whiskbroom sensors (point sensors).

On the other hand, there exist sensor models that
are purely mathematical. These sensor models are
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implemented on the basis of the physical/geometric sensor
models. The latter models are used to construct dense grids
that encompass the entire ground volume covered by the
image under consideration and used to derive these
mathematical models. Forms of those models and their
exploitation are relatively simple compared to those of the
original geometrical models which are often more
complicated. The commonlyused forms are polynomial
and rational polynomial functions of different degrees.
Alternatively, the dense grid of ground—image coordinate
pairs calculated using a geometrical model can be used with
interpolators. To compute ground coordinates from
imagemeasurements, and vice versa, the mathematical
functions or grid/interpolator provide sufficiently close
value to those from the original models. These purely
mathematical models are known as true replacement sensor
models, or TRSM, when they have the same three features
of the original models: (1) Highly accurate fit to the grid; (2)
Rigorous error propagation that is essentially of the same
accuracy as the geometrical model; and (3) Adjustability, or
the ability to upgrade the model parameters when
additional control information becomes available after the
replacement model has already been derived and the
original geometrical model is no longer available.

1.1. Commonly used ground-to-image functions

The most commonly used function for TRSM is the
rational polynomial function. Its form is as follows:
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As a ground-to-image function, the input on the right
hand side of the function contains rational polynomial
coefficients (RPC), a, b, ¢, d, and normalized ground
coordinates, X, Y, Z, and the function calculates nor-
malized image coordinates, /, s (for line and sample). It
is suggested in Forstner et al. (2004) that the maximum
power for ground coordinates be 5, i.e., 0 < u,,y, u,,, U),z,
Ugy, Ugy Ug: < 5. The coefficients are defined relative to
normalized coordinates ofboth the ground and image
points. Normalization for a coordinate, x, is defined as:

(1b)
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Although, rational polynomial functions can extend
to any power, there are only a few forms commonly used

in practice. One of them is the 78-coefficient rational
polynomial function and another one is the direct linear
transformation, which is an 11-coefficient special form
of the 78-coefficient having only linear terms and a
denominator that is common for line and sample coor-
dinates. A matter of concern when using rational poly-
nomial functions is the possibility of zero-crossings
occurring in the denominator and, therefore, it must be
checked for during the estimation of coefficients.

When fit accuracy allows, a numerator only polyno-
mial can be specified to avoid denominator zero-cross-
ing problems. Its form is exactly Eqs. (1a) and (1b)
without the denominators, as follows:
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Frequently, the highest power is not restricted to three
as in the 78-coefficient case.

1.1.1. Coefficient estimation

To encapsulate the ground-to-image functionality of an
original physical sensor model, TRSM coefficients are
estimated by utilizing the physical sensor model’s image
support data. Using these data, a grid of ground point-
image point correspondences is generated as the first step
in creating the replacement sensor model. While the grid of
image points extends through the entire image, the grid of
ground points should extend both to cover the image
footprint and a range in the vertical direction that coversthe
expected terrain elevation range. After the generation,
points in the grid are divided into two sets, fit points and
check points. Fig. 1 depicts such a grid. The number of fit
planes in each direction as shown in the figure may be
different in the coefficient estimation of different images in
order to obtain a required fit accuracy. For example, in
Theiss et al. (2004), 9x9x9 grid was shown to provide
perfect fit for an aerial frame photograph.

With a chosen replacement model such as one from
those described in the previous section, coordinates of
the ground point-image point correspondences in the fit
grid are used to form the equations, that contain the
coefficients as unknown. Because of the large number of
points, the number of equations is generally much larger
than the number of coefficients to be estimated and the
unknowns are practically solved by using least squares
estimation. We may use one of the three methods for
solving for the coefficients as described in Forstner et al.
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