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A B S T R A C T

Drug-induced liver injury (DILI) is a major issue for both patients and pharmaceutical industry due to insufficient
means of prevention/prediction. In the current work we present a 2-class classification model for DILI, generated
with Random Forest and 2D molecular descriptors on a dataset of 966 compounds. In addition, predicted
transporter inhibition profiles were also included into the models. The initially compiled dataset of 1773
compounds was reduced via a 2-step approach to 966 compounds, resulting in a significant increase (p-
value < 0.05) in model performance. The models have been validated via 10-fold cross-validation and against
three external test sets of 921, 341 and 96 compounds, respectively. The final model showed an accuracy of 64%
(AUC 68%) for 10-fold cross-validation (average of 50 iterations) and comparable values for two test sets (AUC
59%, 71% and 66%, respectively). In the study we also examined whether the predictions of our in-house
transporter inhibition models for BSEP, BCRP, P-glycoprotein, and OATP1B1 and 1B3 contributed in improve-
ment of the DILI mode. Finally, the model was implemented with open-source 2D RDKit descriptors in order to
be provided to the community as a Python script.

1. Introduction

Drug-induced liver injury (DILI) is the term used for liver damage
that is caused by drugs, herbal agents or nutritional supplements
(Ghabril et al., 2010; Watkins and Seeff 2006). DILI has gained in-
creasing attention in recent years (Raschi and De Ponti, 2015), as it is
one of the main causes for attrition during clinical and pre-clinical
studies and the main reason for drug withdrawal from the market or for
labeling with a black box warning (Ballet 1997; Chen et al., 2011;
O’Brien et al., 2006; Regev 2014). Thus, great effort has been invested
towards elucidating the toxicological processes and mechanisms that
result in manifestations of DILI (Vinken, 2015). It is widely accepted
that, together with metabolizing enzymes, liver transporters play an
important role for maintaining the integrity and proper function of the
liver, and also influence the ADMET (absorption, distribution, meta-
bolism, excretion and toxicity) profile of drugs (Faber et al., 2003;
Shitara et al., 2013). Actually, there are several recent publications
suggesting that inhibition of liver transporters might result in mani-
festations of DILI. For cholestasis in particular, strong evidence towards
the role of the bile salt export pump (BSEP) (Aleo et al., 2014; Dawson
et al., 2011; Padda et al., 2011; Qiu et al., 2016; Vinken 2015; Vinken

et al., 2013; Welch et al., 2015) has been posed. There is also evidence
for the multidrug resistance-associated protein 2 (MRP2) (Padda et al.,
2011; Pauli-Magnus and Meier 2006), breast cancer resistance protein
(BCRP) (Padda et al., 2011; Pauli-Magnus and Meier 2006), P-glyco-
protein (Padda et al., 2011; Pauli-Magnus and Meier 2006) and mul-
tidrug resistance-associated protein 3 and 4 (MRP3 and MRP4) (Padda
et al., 2011; Pauli-Magnus and Meier 2006; Welch et al., 2015) to be
involved. For hyperbilirubinemia, another possible manifestation of
hepatotoxicity, involvement of organic anion transporting polypeptides
1B1 and 1B3 (OATP1B1 and OATP1B3) (Chang et al., 2013; Sticova and
Jirsa 2013), MRP2 (Sticova and Jirsa, 2013) and to a smaller extent
BCRP (Sticova and Jirsa, 2013) is discussed.

Although in vitro predictive methods are efficient for many toxic
endpoints, they are time-consuming and expensive (Bowes et al., 2012;
Whitebread et al., 2005). In addition, for assessing hepatotoxicity, ex-
perimental methods such as in vitro tests and animal models, have been
shown to share low concordance (< 50%) with human hepatotoxicity
(Chen et al., 2011; Liu et al., 2011; Olson et al., 2000).

This led to the development of predictive computational methods,
which are summarized in two recent reviews by (Chen et al., 2014) and
(Ekins, 2014). Although all these models generally perform quite well,
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they sometimes suffer from low statistical performance, imbalanced
sensitivity vs specificity, or small data sets (Table 1).

In this study we generate in silico classification models for DILI by
compiling multiple and diverse datasets from literature. We carefully
curated these data regarding the chemotypes, as well as the accuracy of
the class label. In addition, we are exploring the importance of hepatic
transporter inhibition on DILI by using the predictions of a set of in-
house in silico classification models as additional descriptors for the DILI
model.

2. Methods

2.1. Data compilation

2.1.1. Training set
Searching PubMed, 2017 (http://www.ncbi.nlm.nih.gov/pubmed),

Google, 2017 (https://www.google.at) and Scopus, 2017 (https://
www.scopus.com/) using the terms: “drug-induced liver injury”,
“DILI”, “drug-induced hepatotoxicity” identified 9 unique datasets for
human DILI/hepatotoxicity (Table 2).

For visualizing the data structures and for converting the names into

structures Marvin from ChemAxon, 2013 (http://www.chemaxon.com
2013) was used.

2.1.2. External test sets
After compiling the training set and generating the DILI model, we

came across one more human DILI dataset that had initially escaped our
attention (Liew et al., 2011). Additionally, there were two more data-
sets published after the model development (Chen et al., 2016; Mulliner
et al., 2016) (Table 3).

All datasets (training set, the three external test sets and the merged
test set) are provided in the Supplementary material.

2.1.3. Chemical curation
For each dataset we applied the following chemotype curation:

• Check for inorganic compounds using MOE 2014.09. (MOE, 2015)
and remove any occurring.

• Using the Standardiser tool (Atkinson, 2014) created by Francis
Atkinson; all salt parts and any compounds containing metals and
rare or special atoms are removed from the dataset and the struc-
tures are standardized.

Table 1
Classification models for DILI reported in literature. Acc stands for accuracy, Sen for sensitivity, Spec for specificity, BA for balanced accuracy, CV for cross validation, EV for external
validation and IV for internal validation.

Reference Descriptors Classification algorithm Data used Reported performance

Cheng and Dixon (2003) 2D molecular descriptor Ensemble recursive
partitioning

382 drugs for CV CV: 76% Acc; 76% Sen; 75% Spec

54 drugs for EV EV: 81% Acc; 70% Sen; 90% Spec
Cruz-Monteagudo et al.

(2008)
Radial distribution function Linear discriminant

analysis
74 drugs for CV CV: 84% Acc; 78% Sen; 90% Spec

molecular descriptors 13 drugs for EV EV: 82% Acc
Matthews et al. (2009) Molecular descriptors 4 commercial QSAR

programs
∼1600 drugs for CV CV: 39% Sen; 87% Spec

18 drugs for EV EV: 89% Sen
Rodgers et al. (2010) topological k-nearest neighbor 37 drugs for EV 84% Acc; 74% Sen; 94% Spec

indices of molecular structures
(MolConnZ) and Dragon
molecular descriptors

Fourches et al. (2010) 2D fragments and Dragon Support vector machine 531 drugs for CV 18 compounds for EV CV: 62–68% Accs
molecular descriptors EV: 78% Acc

Ekins et al. (2010) extended connectivity functional Linear discriminant
analysis

295 compound for CV CV: 59% ACC; 53% Sen; 65% Spec

class fingerprints of maximum
diameter 6 (ECFC_6)

237 compounds for EV EV: 60% Acc; 56% Sen; 67% Spec

Liew et al. (2011) PaDEL molecular descriptor Ensemble of mixed
learning

1087 compounds for CV CV: 68% Accs; 67% Sen; 70% Spec

120 compounds for EV EV: 75% Acc; 82% Sen; 65% Spec
Liu et al. (2011) functional class Bayesian models 888 drugs for training3 data sets with

40–148 drugs for EV
EV: 60–70% Accs

fingerprints
(FCFP_6)

Chen et al. (2013) Mold2 chemical descriptor Decision Forest 197 drugs for CV CV: 70% Acc
Three data sets with EV: 62–69% Accs
190–348 drugs for EV

Liu et al. (2015a) physicochemical descriptors and
fingerprints

Ensemble classifier 677 compounds for CV 81% BA; 66% Sen; 95% Spec

Muller et al. (2015) physicochemical descriptors and
fingerprints

Ensemble classifier 677 compounds for CV 81% BA; 66% Sen; 95% Spec

Muller et al. (2015) ISIDA fragment descriptors SVM 424 drugs for CV 66% BA
Xu et al. (2015) Encoding layers based on SMILES,

PaDEL descriptors
Deep Learning 190, 475 & 1065 compounds for CV CV: 70–88% Accs; 70–90% Sens;

70–87% Specs
185,320, 236,198 & 119 compounds
for EV

EV: 62–87% Accs; 62–83% Sens;
62–93% Specs

Mulliner et al. (2016) 2D and 3D physicochemical descriptors SVM with a genetic
algorithm

3712 compounds for training IV: 75% Acc; 73% AUC

221 compounds for IV
269 compounds for EV

Zhang et al. (2016) FP4 fingerprints SVM 1317 compounds for training Training set: 66% Acc; 85% Sen;
34% Spec; 55% AUC

88 compounds for EV EV: 75% Acc; 93% Sen; 38% Spec;
61% AUC
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