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A B S T R A C T

Cancer is one of the main causes of death in Western countries, and a major issue for human health.
Prolonged exposure to a number of chemicals was observed to be one of the primary causes of cancer in
occupationally exposed persons. Thus, the development of tools for identifying hazardous chemicals and
the increase of mechanistic understanding of their toxicity is a major goal for scientific research. We
constructed a new knowledge-based expert system accounting the effect of different substituents for the
prediction of mutagenicity (Ames test) of aromatic amines, a class of compounds of major concern
because of their widespread application in industry. The herein presented model implements a series of
user-defined structural rules extracted from a database of 616 primary aromatic amines, with their Ames
test outcomes, aimed at identifying mutagenic and non-mutagenic chemicals. The chemical rationale
behind such rules is discussed. Besides assessing the model’s ability to correctly classify aromatic amines,
its predictivity was further evaluated on a second database of 354 azo dyes, another class of chemicals of
major concern, whose toxicity has been predicted on the basis of the toxicity of aromatic amines
potentially generated from the metabolic reduction of the azo bond. Good performance in classification
on both the amine (MCC, Matthews Correlation Coefficient = 0.743) and the azo dye (MCC = 0.584)
datasets confirmed the predictive power of the model, and its suitability for use on a wide range of
chemicals. Finally, the model was compared with a series of well-known mutagenicity predicting
software. The good performance of our model compared with other mutagenicity models, especially in
predicting azo dyes, confirmed the usefulness of this expert system as a reliable support to in vitro
mutagenicity assays for screening and prioritization purposes. The model has been fully implemented as
a KNIME workflow and is freely available for downstream users.

ã 2016 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

1.1. Background

Cancer is one of the main causes of death in Western countries.
In 2012 there were about 14.1 million new cases, with globally
about 8.2 million deaths (14.6% of total human deaths) (Stewart
and Wild, 2014). At present it is widely accepted that, together
with the increased life expectancy, prolonged exposure to a
number of synthetic and natural chemicals in the environment is a
primary cause of cancer onset (Albreht et al., 2008). Cancer
prevention is today therefore a critical health issue.

Because of its serious social impact, great efforts have been
made in the last few decades to understand and prevent the causes
of cancer induced by exposure to chemicals. As a consequence,
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carcinogenicity has been the subject of a long series of mechanistic
investigations (Benigni and Bossa, 2011). Carcinogenesis is a
pathological process, caused by permanent damages to genetic
material of cells. Carcinogenicity in vivo assays cannot be
performed for a high number of substances because of time, cost
and ethical issues. Mutagenicity is widely recognized as a valid
surrogate of carcinogenicity and its assessment is explicitly
required by several regulations in the field of chemical safety
(FDA, 2013; EC, 2006, 2009). The term mutagenicity refers to the
ability of a chemical to induce genetic damages, that may occur by
several mechanisms involving interactions with the DNA (i.e.,
formation of adducts, base substitutions, frame-shift deletions,
intercalations) or with both the DNA and other cellular targets, e.g.
proteins (i.e., chromosomal aberrations, and changes in the
number of chromosomes). (Benigni and Bossa, 2011). Mutagenicity
assessment is a suitable first step of a tiered strategy for the
identification of potential hazardous compounds in large screening
programs, because it is simpler than carcinogenicity assessment.

Indeed, a relative simple and rapid in vitro assay was proposed
by Bruce Ames for detecting DNA mutations induced by chemicals
(Ames et al., 1975; Ames, 1979). In the Ames test, frame-shift
mutations or base-pair substitutions are detected by exposure of
histidine-dependent genetically engineered strains of Salmonella
typhimurium to the chemical to be tested. When these strains are
exposed to a mutagen, reverse mutations restore the bacteria’s
ability to synthesize histidine and thus to grow on a medium
deficient in this amino acid (Hansen et al., 2009). Application of the
Ames test to large numbers of chemicals has shown that this assay
has high positive predictivity for DNA-reactive chemical
carcinogens, confirming a causal relationship between genetic
damage and cancer insurgence (Zeiger et al.,1990). Today the Ames
test is by far the most commonly used, long-established in vitro test
for chemical mutagenicity screening (OECD, 1997).

Aromatic amines are a class of chemicals traditionally
recognized as of high concern for human health. They find
applications in several chemical industry manufacturing sectors
such as oil refining, production of synthetic polymers, adhesives
and rubbers, pharmaceuticals, pesticides and explosives (Snyder-
wine et al., 2002). They may also be generated through the
combustion of organic materials, such as emissions of tobacco
smoke (Platzek, 2009). Epidemiological studies have confirmed
that some of these chemicals induce bladder cancer in occupa-
tionally exposed persons (Skipper et al., 2010).

Prolonged exposure of humans to carcinogenic aromatic
amines is a primary issue in the dye manufacturing industry.
Another class of chemicals related to the aromatic amines, i.e. azo
compounds, is widely employed as industrial dyes. Azo dyes were
detected as potential carcinogens as early as the 1930’s, when
Kinosita (1936) reported that N,N-dimethyl-4-aminoazobenzene,
commercially known as “butter yellow”, induced liver tumors in
rats. The toxicity of azo dyes can be explained by the generation of
carcinogenic aromatic amines after reductive cleavage of the azo
bond. This can occur in a variety of conditions, including those
encountered in the digestive tract of mammals (Pinheiro et al.,
2004; Øllgaard et al., 1998; Weber and Adams, 1995). Currently,
more than 3000 individual azo colorants are in use, accounting for
60–70% of all dyes used (ETAD, 2003). For this reason, they are a
major subject of attention in carcinogenicity studies and occupa-
tional health preventive actions (Pinheiro et al., 2004).

With the recent introduction of more stringent chemical safety
regulations, in silico methods have been recognized as a valuable
support and, sometimes, as an alternative to in vivo and in vitro
assays. In silico methods can provide information for a very large
number of substances in relatively short times and at low cost. The
proven reproducibility and ease of execution of the Ames test has
made an abundance of experimental data available in recent years.

This has led to the development of many in silico models for the
prediction of Ames mutagenicity, which has become one of the
most commonly modeled endpoints, with the best results. The
effectiveness of in silico methods for this endpoint is demonstrated
by the fact that regulatory agencies may consider candidate
genotoxic impurities (GTIs) predicted as non-mutagenic by
validated in silico models equivalent to Ames negative ones
(FDA, 2008, 2013).

1.2. In silico models for predicting the mutagenicity of aromatic
amines: state of the art

Numerous Quantitative Structure-Activity Relationship (QSAR)
approaches for the prediction of aromatic amine mutagenicity
have been proposed in the last decades. Debnath et al. (1992)
compiled a large database of chemicals with various chemical
scaffolds (e.g., aniline, biphenyl, anthracene, pyrene, quinoline,
carbazole), with quantitative mutagenicity data determined in
experiments on Salmonella TA98 and TA100 strains, with S9
metabolic activation. Debnath et al. found a quantitative correla-
tion between mutagenicity and the electrostatic and hydrophobic
properties of these chemicals, expressed respectively by the
Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccu-
pied Molecular Orbital (LUMO) energies, and by log P. Since then,
several studies were performed on the dataset compiled by
Debnath et al. Maran et al. (1999) built a six descriptor model
starting from a large pool of constitutional, geometrical, topologi-
cal, electrostatic, and quantum chemical descriptors. Gramatica
et al. (2003) derived Genetic Algorithm – Multiple Linear
Regression (GA-MLR) models based on theoretical descriptors
available from DRAGON software (Todeschini and Consonni, 2008).
Basak and Grunwald (1995) derived k-Nearest Neighbor (k-NN)
models comparing the effectiveness of atom-pair counts, topolog-
ical indices and physicochemical parameters for computing
similarity between chemicals. Bhat et al. (2005) developed
Artificial Neural Networks (ANNs) based on a variety of molecular
descriptors calculated using quantum-chemical semiempirical
methods. Several QSAR studies were proposed by Hatch and
coworkers on the mutagenic potency (frame-shift mutations in
TA98 or TA1538 Salmonella strains) of aromatic amines. A first
study (Hatch et al., 1991) suggested a correlation between the
mutagenic potency of a series of aminoimidazo-azaarene and
aminocarboline and a series of relevant structural features (e.g.,
number of fused rings, number of heteroatoms in rings, and methyl
substitution on ring atoms). Further studies on aminoimidazo-
azaarenes (Hatch et al., 1996) and aromatic and heteroaromatic
amines (Hatch and Colvin, 1997; Hatch et al., 2001) also
highlighted the role of electronic properties, such as LUMO
energies, in the modulation of the mutagenic potency of these
chemicals. The key role of electronic properties, particularly HOMO
and LUMO energies, was confirmed by several other computational
studies (Zhang et al., 1993; Lewis et al., 1995; Felton et al., 1999).

While QSARs for aromatic amines were effective for modeling
mutagenicity, they were not suitable for distinguishing mutagenic
from non-mutagenic amines (Benigni et al., 1998). As a result,
fewer examples of successful classification models are reported in
literature. A noteworthy attempt was proposed by Benigni et al.
(2007): amines were first separated into structural subclasses,
then for each class different factors were considered for
classification purposes, e.g. classification of single-ring amines
was mainly based on electronic factors, biphenyls on steric factors,
while fused-ring amines were always classified as mutagens.

The majority of the models above have never been imple-
mented. Hence they can be not useful for regulatory purposes. On
the other hand, there are several widely used software imple-
menting mutagenicity (Ames) models for the prediction of a wide
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