
In silico prediction of the mutagenicity of nitroaromatic compounds
using a novel two-QSAR approach

Yi-Lung Ding a, You-Chen Lyu a, Max K. Leong a,b,⁎
a Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan
b Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan

a b s t r a c ta r t i c l e i n f o

Article history:
Received 31 July 2016
Received in revised form 13 November 2016
Accepted 21 December 2016
Available online 24 December 2016

Certain drugs are nitroaromatic compounds, which are potentially toxic. As such, it is of practical importance to
assess and predict their mutagenic potency in the process of drug discovery. A classical quantitative structure-
activity relationship (QSAR) model was developed using the linear partial least square (PLS) scheme to under-
stand the underline mutagenic mechanism and a non-classical QSAR model was derived using the machine
learning-based hierarchical support vector regression (HSVR) to predict the mutagenicity of nitroaromatic com-
pounds based on a series ofmutagenicity data (TA98− S9). Itwas observed that HSVR performed better than PLS
as manifested by the predictions of the samples in the training set, test set, and outlier set as well as various sta-
tistical validations. A mock test designated to mimic real challenges also confirmed the better performance of
HSVR. Furthermore, HSVR exhibited superiority in predictivity, generalization capabilities, consistent perfor-
mance, and robustness when compared with various published predictive models. PLS, conversely, revealed
some mechanistically interpretable relationships between descriptors and mutagenicity. Thus, this two-QSAR
approach using the predictive HSVR and interpretable PLS models in a synergistic fashion can be adopted to fa-
cilitate drug discovery and development by designing safer drug candidates with nitroaromatic moiety.
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1. Introduction

Nitroaromatic compounds (NACs), which are also termed aromatic
nitros or nitroarenes, are a class of compounds with one or more nitro
substituents attached to mono- or polycyclic aromatic hydrocarbons,
viz. arenes, and can be derivatized from polycyclic aromatic
hydrocarbons (PAHs) (Pederson and Siak, 1981). Many NACs show
mutagenic and carcinogenic properties since they can be converted to
highly reactive electrophilic nitroanion radical, nitroso intermediates,
andN-hydroxy derivative,which, in turn, can form adductswithDNA, tis-
sue proteins, and serum albumins and hemoglobins (Sabbioni, 1994),
leading to various forms of toxicity such as mutagenicity (Debnath et al.,
1991), immunotoxicity (Li et al., 1999), hepatotoxicity (Aßmann et al.,
1997), skin sensitization (Cronin et al., 1998), nephrotoxicity (Travlos
et al., 1996), neurotoxicity (Philbert et al., 2000), teratogenicity (Kovacic
and Somanathan, 2006), or carcinogenicity (Debnath et al., 1991).

Generally, NACs are considered structural alerts in the process of
drug discovery and development due to their potential toxic risks
(Benigni and Bossa, 2006; Stepan et al., 2011) despite the fact that an

appreciable number of drugs contain the nitroaromatic structure
(Boelsterli et al., 2006). For example, nitroaromatic flutamide, which is
a therapeutic agent for treating metastatic prostate cancer by blocking
both endogenous and exogenous testosterone, is considered potentially
hepatotoxic (Martelli et al., 2000). It has been attempted to replace the
nitro group by cyano to reduce its toxicity while maintaining its efficacy
(Coe et al., 2007).

Furthermore, it is of great importance to accurately and reliably as-
sess toxicity of drug candidates during drug discovery and development
(Dobo et al., 2012; Escobar et al., 2013; McCarren et al., 2011; Valerio,
2009; Valerio et al., 2007; Venkatapathy et al., 2009). Of various assay
systems (Rao et al., 2004), the in vitro Ames test, which uses a
histidine-freemediumwith an engineered Salmonella typhimurium bac-
teria to detect the sensitivity of mutagenics, is the most predictive and
prevalent one (Ames et al., 1975; Benigni et al., 2010; Hornberg et al.,
2014). Additionally, it has been shown that mutagenicity in S.
typhimurium is closely related to carcinogenicity in rodent and human
bioassays (Mortelmans and Zeiger, 2000). In fact, Ames tests have
been extensively adopted by the European Union's Registration, Evalu-
ation, Authorization, and Restriction of Chemicals (REACH) legislation
for predicting toxicity of novel chemicals (Claxton et al., 2010). In addi-
tion, different S. typhimurium strains have been engineered to test for
different types of mutations and metabolic pathways. The TA100 and
TA98 strains, for instance, are developed to detect base-pair substitution
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mutations and frame-shift mutations, respectively. Of various bacterial
strains, TA100 and TA98 are the most effective for mutagenicity testing
because they are more sensitive to mutagenic activity (Hornberg et al.,
2014).

The mechanisms of nitroaromatic mutagenesis are rather complex,
involving in penetration into the cellular systems, diffusion and binding
to the active site of the specific enzyme, reduction reaction in the pres-
ence of certain enzymes to form an aromatic hydroxylamine intermedi-
ate, which, in turn, can further produce a nitrenium ion, viz. an
electrophilic intermediate per se, to further react with nucleophiles
such as proteins or DNA to form an adduct (Hakimelahi and
Khodarahmi, 2005). Aromatic amines also go through the samemecha-
nism of adduct reaction except that the aromatic hydroxylamine inter-
mediates arise from oxidation. Thus, the formation of nitrenium
intermediate can take place at nitro or amine moiety in those amine-
containing NACs. This can yield a complicated situation since there is
no compelling evidence to support the predominance of both functional
groups (Fu, 1990). Nevertheless, it has been indicated that the TA98
strain consists of a full complement of nitroreductases required to acti-
vate the reduction reaction of NACs, whereas aromatic amines demand
the presence of an exogenous metabolic activation system, viz. S9 mix,
to initiate the oxidation reaction, suggesting that mutagenicity can
only take place at the nitro moiety in nitroaromatic amines in S.
typhimurium strain TA98 without S9 mix (Fu, 1990). Accordingly, such
ambiguity can be eliminated once themutagenicity study of NACs is car-
ried out using S. typhimurium strain TA98 without S9 microsomial
activation.

In addition to in vitro and in vivo assay systems, in silico approaches
play an increasing role in regulatory toxicology and drug safety assess-
ment (Benigni et al., 2013; Cherkasov et al., 2014; Fioravanzo et al.,
2012; Greene and Pennie, 2015; Simon-Hettich et al., 2006; Valerio,
2013). In fact, various quantitative structure-activity relationship
(QSAR) techniques, which are a mathematic means to establish the re-
lationship between biological activity and chemical characteristics, have
been adopted to develop predictivemodels, andmore importantly, they
have been extensively employed by REACH, the Seventh Amendment
(of the Cosmetics Directive), and the Screening Information Data Set
(SIDS) to predict toxicity of untested compounds as a supplement to ex-
perimental assessments (Bakhtyari et al., 2013). It has been suggested
that in silico approach can be a good alternative to Ames tests (Naven
et al., 2012). In fact, various packages and theoretical models have
been proposed to quantitatively predict mutagenicity of Ames test
(Hillebrecht et al., 2011; Xu et al., 2012). Also, a number of comparative
molecular field analysis (CoMFA), molecular similarity indices analysis
(CoMSIA), genetic function approximation (GFA), hologram QSAR
(HQSAR), and classical QSAR models have been developed to predict
mutagenicity of NACs (Caliendo et al., 1995; Debnath et al., 1991; Fan
et al., 1998; King et al., 1996; Klein et al., 2000c; Lopez de Compadre
et al., 1998; Lopez de Compadre et al., 1990; Lopez De Compadre et al.,
1988; Maynard et al., 1986; Nair and Sobhia, 2008; Wang et al., 2005).

Linear predictivemodels, such as linear partial least square (PLS), are
useful to interpret the relationship between descriptor and biological
activity (Hasegawa and Funatsu, 2010). Such advantage, however, can
become an insurmountable difficulty for developing a sound predictive
model in case that structure-activity data are not linear per se as illus-
trated by the study conducted by Debnath et al. (1991), in which the
nonlinear relationship between log P and log TA98 was observed. Ma-
chine learning (ML) methods, conversely, can extract the nonlinear re-
lationship between input and output that are otherwise often
mishandled by linear approaches since it has been demonstrated that
ML-based models generally perform better than their conventional lin-
ear counterparts (Hou et al., 2009). Nevertheless, ML-based models are
normally considered as “black box” approaches since they are hard to
interpret the relationship between input and output. In another word,
the advantages of PLS can be the limitations of ML-based schemes and
vice versa. Nevertheless, both seemingly contradictory approaches can

be carried out in a synergistic fashion to produce high predictivity
while the interpretability can still be maintained at the same time as re-
cently proposed by Fujita andWinkler (Fujita andWinkler, 2016). It has
been suggested that linear SVMcan be an alternative to resolve the con-
flict between predictivity and interpretability (Cherkasov et al., 2014).
In reality, linear SVM is not the ultimate solution to this issue since it
has been shown that linear SVM models cannot properly address the
nonlinear relationship between input and output as compared with
SVM (Ren et al., 2007).

Herein, the objective of this investigation was to use the novel two-
QSAR approach by combing the predictive ML-based model and the in-
terpretable linear model to accurately predict themutagenicity of NACs
and to understand the underline complex mechanism based on the
most comprehensive data collection (TA98 − S9) from the literature,
respectively. The former was carried out by the hierarchical support
vector regression (HSVR) scheme (Leong et al., 2009) since it can simul-
taneously possess the advantageous characteristics of local model and
global model, viz. broader coverage of applicability domain (AD) and
higher level of predictivity, respectively, and the latter was executed
by the PLS scheme to offer straightforward interpretation.

2. Materials and methods

2.1. Data compilation

The sample data play a crucial role in determining the quality of a
predictive model (Cherkasov et al., 2014). As such, it is of necessity to
collect a great number of samples with broad ranges of chemical struc-
tures and biological activities to develop a predictive model. A compre-
hensive literature search was carried out to compile data from a variety
of sources (André et al., 1997; André et al., 1995; Debnath et al., 1991;
El-Bayoumy et al., 1981; Hooberman et al., 1994; Juneja et al., 1991;
Juneja et al., 2001; Jung et al., 1991; Klein et al., 2000b; Klein et al.,
2000c; LaVoie et al., 1981; Ludolph et al., 2001; Rosenkranz et al.,
1985; Rosenkranz and Mermelstein, 1985; Takamura-Enya et al.,
2006; Tokiwa et al., 1981; Tokiwa et al., 2003; Vance et al., 1987; von
Tungeln et al., 1994; Watanabe et al., 1994; You et al., 1993; Yu et al.,
1992), whose mutagenicity values were expressed by the logarithm of
the number of revertants per nanomole and assayed by S. typhimurium
TA98− S9microsomial preparation. All chemical structures were care-
fully scrutinized to ensure their integrity and certainty since compounds
with different chirality can exert different activities. The SMILES strings,
CAS registry numbers, TA98 values, and literature references of all mol-
ecules collected in this study are listed in Table S1 (Supporting
information).

2.2. Molecular descriptors

All selected molecules were first subjected to full geometry
optimization using the density functional theory (DFT) B3LYP method
with the basis set 6-31G(d,p) by the Gaussian 09 package (Gaussian,
Wallingford, CT) in the dimethyl sulfoxide (DMSO) solvent using the
polarizable continuum model (PCM) (Cammi and Tomasi, 1995;
Miertuš et al., 1981) to mimic the real assay conditions. The atomic
charges of optimized structures were calculated using the molecular
electrostatic potential (ESP) model of Merz and Kollman (Besler et al.,
1990). Furthermore, the energies of frontier orbitals, viz. HOMO energy
(EHOMO) and LUMO energy (ELUMO), and dipolemoment, were retrieved
from optimization calculation. The energy-related descriptors, namely
hardness (η), softness (σ), chemical potential (μ), and electrophilic
index (ω), were also determined because of their implication in the for-
mation of electrophile-nucleophile adduct (LoPachin et al., 2012).

η ¼ ELUMO−EHOMOð Þ=2 ð1Þ

σ ¼ 1=η ð2Þ
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