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a b s t r a c t

The automatic co-registration of point clouds, representing three-dimensional (3D) surfaces, is an impor-
tant technique in 3D reconstruction and is widely applied in many different disciplines. An alternative
approach is proposed here that estimates the transformation parameters of one or more 3D search sur-
faces with respect to a 3D template surface. The approach uses the nonlinear Gauss–Helmert model, min-
imizing the quadratically constrained least squares problem. This approach has the ability to match
arbitrarily oriented 3D surfaces captured from a number of different sensors, on different time-scales
and at different resolutions. In addition to the 3D surface-matching paths, the mathematical model
allows the precision of the point clouds to be assessed after adjustment. The error behavior of surfaces
can also be investigated based on the proposed approach. Some practical examples are presented and
the results are compared with the iterative closest point and the linear least-squares approaches to
demonstrate the performance and benefits of the proposed technique.
� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Surface registration is an intermediate, but crucial, step in the
three-dimensional (3D) reconstruction of real objects. The terres-
trial laser scanning technique is now widely applied in surveying
engineering, photogrammetry, and other disciplines as its perfor-
mance capabilities are advancing rapidly (Ebeling et al., 2011;
Gordon and Lichti, 2007). Hundreds of different laser scanners with
a great variety of measurement systems are now available; in the
current fast-paced laser scanning market, these are updated almost
every year. Even products of the same brand may have totally dif-
ferent specifications between different series, e.g. different sensors,
different resolutions, different scales and different degrees of pre-
cision. An alternative approach to surface registration is therefore
required with the ability to handle these different types of sensors,
at different resolutions and at different degrees of precision. It is
also necessary to analyze the error behavior of surfaces and to
assess the registered observations after adjustment.

A cloud of point samples from the surface of an object is typi-
cally obtained from two or more points of view in different refer-
ence frames. Registration consists of the alignment of the search
point set with the template point set by estimating the transforma-
tions between the datasets. The registration strategy may differ
depending on whether the targets are used to provide the refer-

ence points in two clouds of point sets. In terms of whether initial
information is required, registration techniques can be classified as
either coarse or fine registration. In coarse registration, the main
goal is to compute an initial estimate of the rigid motion between
two corresponding clouds of 3D points; in fine registration, the
goal is to obtain the most accurate solution possible. In fine regis-
tration, a higher-quality initial estimate is always required before
the calculation. The scope of this paper will be limited to non-
target fine registration.

Non-target fine registration is achieved by using a sufficient
overlap of the point clouds in different datasets and minimizing
the sum of the squares of the distance between the temporarily
corresponding points in each iteration. A well-known approach
to solving the problem is the iterative closest point (ICP) method
(Besl and McKay, 1992; Zhang, 1994; Chen and Medioni, 1991,
1992). The implementation of the ICP method is based on the
point-to-point or point-to-plane searching techniques and an esti-
mation of the rigid transformation that aligns the pairs of nearest
points in the two datasets. Although the ICP method is a powerful
algorithm for non-target registration, it has obvious shortcomings
e.g. low time efficiency and easily fall into a local minimum
(Fusiello et al., 2002; Gruen and Acka, 2005; Salvi et al., 2007).
Several variations and improvements have been introduced to
the original version of the ICP concept to improve the algorithm
in terms of the transformation accuracy, the convergence proper-
ties and the computational cost (Masuda and Yokoya, 1995;
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Trucco et al., 1999; Greenspan and Godin, 2001; Sharp et al., 2002;
Zinsser et al., 2003; Low, 2004; Grant et al., 2012).

Another powerful approach used to complete 3D surface
matching originates from the least-squares matching (LSM) tech-
nique (Gruen, 1984, 1985a; Ackermann, 1984; Pertl, 1984). Surface
patch matching in photogrammetry was first resolved by Gruen
(1985a) using this technique. Multiple patch matching with two-
dimensional (2D) images using the LSM technique has also been
demonstrated by Gruen (1985b). Gruen and Acka (2005) reported
a least-squares 3D (LS3D) surface matching approach. This
approach was designed for arbitrary 3D surface data and is an
extension of 2D least-squares image matching. Akca (2010)
enhanced the LS3D approach in terms of the computational cost.
However, as Grant et al. (2012) pointed out, the stochastic proper-
ties of the normal to the local surface are neglected in the LS3D
approach. Gruen and Acka (2005) and Akca (2010) used the LS3D
approach based on the generalized Gauss–Markov model to esti-
mate the transformation parameters with the assumptions that
the measurement errors have a simple stochastic character with-
out bias and that only the components of the target surface are
affected by these errors. The stochastic quantities of the source sur-
face were neglected; the effect of these is minor if the target and
source surfaces are generated by the same sensor or method with
the same measurement error pattern. However, the principal
hypothesis of a particular model matrix in the Gauss–Markov
model is not necessarily satisfied in all applications.

We present here a new approach, an extension of the LS3D
approach, to match two arbitrary 3D surfaces. Our proposed
approach estimates the rigid-body transformation parameters
between two corresponding point clouds using the nonlinear
Gauss–Helmert (GH) model. We therefore called the proposed
approach the GH-LS3D approach. In this GH-LS3D approach, the
nonlinear GH model is introduced to address the so-called
weighted total least-squares problem. The iteratively linearized
GH model proposed by Pope (1972) was used to adjust error-in-
variables (EIV) model problems in arbitrary 3D surface matching
problems. By solving the least-squares problem within the GH
model, we obtained the solution to the underlying nonlinear prob-
lem with a reasonable approximation and some of the potential
pitfalls in the iterative adjustment of nonlinear problems were
avoided (Pope, 1972). This provided an opportunity to analyze
the error behavior of both surfaces and to assess the co-
registered surfaces after adjustment.

Section 2 briefly defines the problems of registration and pre-
sents the mathematical formulation of the GH-LS3D approach, as
well as describing the computational implementation of the pro-
posed approach. Section 3 presents some experimental results
based on the non-target fine registration of the point clouds of a
terrestrial laser scanner to demonstrate the capabilities of the pro-
posed approach. Some conclusions and further extensions are
given in Section 4.

2. GH-LS3D surface matching

2.1. Statement of the problem and definition

This work concentrated on the pairwise alignment of two
meshes, although multi-view registration (Pulli et al., 1997; Pulli,
1999) should also benefit from the approach described here. Let
target and source refer to two partially overlapping scans (surfaces)
in two different local coordinate frames. The task of registration is
to estimate the transformation parameters that, when applied to
the target points, best align the source and the target. Alignment
is measured by an error function – for example, the minimization
of the sum of the squares of the Euclidean distance. To measure the

Euclidean distance, we need to select the correspondence between
the source and the target. The ICP algorithm and its variants provide
different schemes for choosing the corresponding points between
the source and the target; they then use the correspondences to cal-
culate the transformation parameters based on a rigid-body trans-
formation. Thus the registration algorithms mainly consist of two
steps: (1) matching and selection; and (2) computation of the
transformation parameters. In the rest of this paper, we label these
two steps M and C, respectively.

To start the registration algorithm, the program runs theM-step
to update the target by approximations of the transformation
parameters and selects the new version of the correspondences
from the source. Then, in the C-step, the program estimates the
updated transformation parameters using the correspondences
from the last M-step. If the estimated transformation parameters
do not change significantly in the C-step, or if the results reach a
termination condition, the iteration will be terminated; otherwise
the iteration returns to the M-step and uses the last updated trans-
formation parameters instead of the previous values. The schemes
to find ideal correspondences in the M-step can be applied in par-
allel in the ICP series and the LS3D approach. In the T-step in the
ICP method, the goal function that minimizes the Euclidean dis-
tance by least squares is obtained indirectly by estimating and
applying rigid transformations. In contrast, the LS3D approach for-
mulates the goal function directly in a generalized Gauss–Markov
model (Gruen and Acka, 2005). The GH-LS3D approach is an exten-
sion of the LS3D approach; the main improvement in the proposed
approach is in terms of the T-step.

2.2. Mathematical model

The source and target refer to two partially overlapping scans
that are digitized point by point in the two different local coordi-
nate frames of the same object. Let f(x,y,z) and g(x,y,z) denote
overlapping regions of the object in the source surface and the tar-
get surface, respectively. The problem of 3D surface matching
based on the LSM statement is estimating the transformation
parameters to align the target surface g(x,y,z) with the source sur-
face f(x,y,z). If a matching is established between f(x,y,z) and g(x,y,
z) then following equation holds:

f ðx; y; zÞ ¼ gðx; y; zÞ ð1Þ
According to Eq. (1), the source surface elements have corre-

sponding elements in the target surface and vice versa. If we then
assume that e(x,y,z) is a true error vector between the two sur-
faces, then we can derive:

f ðx; y; zÞ þ eðx; y; zÞ ¼ gðx; y; zÞ ð2Þ
Eq. (2) is the observation equation for LS3D. In GH-LS3D, the

error vector e(x,y,z) is divided into ef(x,y,z) and eg(x,y,z), which
represent the error stemming from the source surface and target
surface, respectively. Thus the observation equation for GH-LS3D
is:

f ðx; y; zÞ þ ef ðx; y; zÞ ¼ gfðx; y; zÞ þ egðx; y; zÞg ð3Þ
Eq. (3) is the condition equation with the measurement errors

in all observations. Then the matching problem is to solve the fol-
lowing least squares problem:X

jjef jj2 þ jjgfeggjj2
� �

¼ min ð4Þ

It is known that, in the Gauss–Markov model, only the compo-
nents of the observation vector are affected by the measurement
errors and these are calculated by the least-squares technique with
a certain design matrix in a normal equation. A standard EIV model
is a Gauss–Markov model with an uncertain design matrix in a
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