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a b s t r a c t

Mobile laser scanning (MLS) has become a popular technique for road inventory, building modelling,
infrastructure management, mobility assessment, etc. Meanwhile, due to the high mobility of MLS
systems, it is easy to revisit interested areas. However, change detection using MLS data of street envi-
ronment has seldom been studied. In this paper, an approach that combines occupancy grids and a
distance-based method for change detection from MLS point clouds is proposed. Unlike conventional
occupancy grids, our occupancy-based method models space based on scanning rays and local point
distributions in 3D without voxelization. A local cylindrical reference frame is presented for the interpo-
lation of occupancy between rays according to the scanning geometry. The Dempster–Shafer theory (DST)
is utilized for both intra-data evidence fusion and inter-data consistency assessment. Occupancy of
reference point cloud is fused at the location of target points and then the consistency is evaluated
directly on the points. A point-to-triangle (PTT) distance-based method is combined to improve the
occupancy-based method. Because it is robust to penetrable objects, e.g. vegetation, which cause
self-conflicts when modelling occupancy. The combined method tackles irregular point density and
occlusion problems, also eliminates false detections on penetrable objects.
� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Change detection techniques have been applied in different
fields such as environment monitoring (Tian et al., 2013), 3D city
model updating (Taneja et al., 2013), street environment inventory
(Pu et al., 2011), simultaneous localization and mapping (SLAM)
(Wolf and Sukhatme, 2004; Moras et al., 2011), moving object
tracking (Yin and Collins, 2007; Irani and Anandan, 1998;
Lindstrom and Eklundh, 2001), surveillance systems (O’Callaghan
and Haga, 2007) and so on. The spatial scale can be as large as a
whole country, a forest, a city or as small as a street. Objects of
interest vary from ground surfaces, vegetation, buildings, cars to
pedestrians.

In remote sensing studies, large coverage images are usually
used for large spatial scale change detection in forest or urban
areas for land-cover and land-use monitoring (Hussain et al.,
2013; Tian et al., 2013). Airborne laser scanning (ALS) data is also
used for similar applications with high geometric precision due

to accurate 3D acquisition (Xu et al., 2013; Hebel et al., 2013; Yu
et al., 2004). In recent years, 3D maps and virtual city models have
been under fast development, therefore many studies have focused
on street environment monitoring and city model updating (Früh
and Zakhor, 2004; Kang et al., 2013).

Mobile mapping systems (MMSs) can easily scan streets multi-
ple times, therefore allow us to detect changes at street or even
city-scale. A MMS is often a georeferenced vehicle mounted with
image and/or laser sensor used for environment mapping. Laser
scanning provides precise 3D geometric information on the envi-
ronment, which is of great interest for 3D mapping, localization,
scene perception, motion tracking and navigation purposes.
Studies from computer vision mainly use imagery for city and
street scene change detection (Pollard and Mundy, 2007;
Sakurada et al., 2013; Košecka, 2013; Eden and Cooper, 2008;
Taneja et al., 2011, 2013). However, lidar (light detection and rang-
ing) data (also referred to as laser scanning data, range data or lidar
point clouds) have been proven to be an accurate data source for
3D urban reconstruction (Lafarge and Mallet, 2011; Chauve et al.,
2010; Verma et al., 2006; Zhou and Neumann, 2010; Toshev
et al., 2010; Banno et al., 2008; Poullis, 2013), infrastructure
management and road inventory (Pu et al., 2011; Zhou and
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Vosselman, 2012). Thus, mobile laser scanning (MLS) data is inten-
sively studied nowadays (Weinmann et al., 2014; Demantké et al.,
2011; Monnier et al., 2012; Yang and Dong, 2013; Aijazi et al.,
2013; Serna and Marcotegui, 2014; Qin and Gruen, 2014).

Change detection methods specific to MLS point clouds have
been seldom investigated, therefore the development of
corresponding approaches becomes urgent. State-of-the-art
distance-based methods, e.g. point-to-point, point-to-plane or
point-set to point-set distances, may be used for this purpose
(Girardeau-Montaut et al., 2005). However, irregular point density
and occlusions still remain major challenges. In this paper, we aim
to develop a street environment change detection method that is
robust to point density variations and capable of distinguishing
occlusions from real changes. First, related work and our contribu-
tion are discussed in Section 2. Then, the concept of
occupancy-based change detection is explained in Section 3.
Section 4 presents the PTT distance-based method and the combina-
tion with the occupancy-based one. Section 5 describes the experi-
ments and the corresponding results. Quantitative evaluation is
demonstrated in Section 6. Finally, conclusions are drawn and lim-
itations are discussed in Section 7.

2. Related work

Change detection has been studied in different fields, e.g.
remote sensing and photogrammetry, computer vision, robotics.
Related work is presented based on different approaches.

2.1. Change detection from remote sensing and airborne lidar data

Remote sensing change detection approaches vary from
pixel-based, region-based to object-based methods. Hussain et al.
(2013) summarize approaches as pixel-based, e.g. image differenc-
ing, and object-based, e.g. classified object comparison, for remo-
tely sensed images. Tian et al. (2013) use a region-based method
for building and forest change detection, and claim that
region-based methods perform generally better than pixel-based
methods. Similarly, change detection using airborne laser scanning
(ALS) data also starts from pixel-based method. Murakami et al.
(1999) subtract digital surface models (DSMs) generated from
ALS data at different times. Then a simple shrinking and expansion
filter was utilized to remove edges of unchanged features. Changes
are detected by simple image differencing at 2.5D. Many later stud-
ies follow the same strategy for both urban and forest environment
change detection (Steinle and Bahr, 2003; Matikainen et al., 2003;
Vögtle and Steinle, 2004; Yu et al., 2004; Champion et al., 2009;
Choi et al., 2009; Rutzinger et al., 2010). Walter (2004) uses
pixel-based and object-based classification of multispectral and
lidar data for change detection in geographic information system
(GIS) databases. Vosselman et al. (2004) classify ALS data as
bare-earth, building and vegetation, and then compare with a
topographical database for map updating. Xu et al. (2013) detect
and classify changes in buildings after classification of ALS data
into urban objects.

2.2. Change detection from terrestrial and mobile lidar data

Terrestrial laser scanning (TLS) and MLS data demand more
accurate detection methods. Object-based change detection can
be affected by the object recognition accuracy, thus point-based
and region-based methods are often used. Girardeau-Montaut
et al. (2005) propose a framework to detect changes from terres-
trial lidar data semi-automatically. Point clouds are directly com-
pared using three methods, i.e. average distance, best fitting
plane orientation and the Hausdorff distance (the maximum

distance among the points in one set to the closest point in another
set). Results show that the Hausdorff distance performs best. A
local model for distance calculation is suggested in order to avoid
density variation issues. Kang et al. (2013) also use the Hausdorff
distance to detect changes in buildings from TLS data.
Point-to-point distance-based methods are practical for TLS and
MLS data because changes can be detected directly in 3D.
Nevertheless, point-to-point distance is very sensitive to point
density. A local surface model can be helpful, since for example
point-to-triangle distance (PTTD) or point-to-plane distance are
more robust than single point-to-point distances. Zeibak and
Filin (2007) treat 3D laser scans as range panoramas. Range images
are compared from the sensor perspective, which avoids false
detection on occluded parts. Qin and Gruen (2014) detect changes
at street level using MLS point clouds and terrestrial images. After
co-registration, points are projected onto each image. Then, stereo
pairs of terrestrial images are compared with point clouds to find
the geometrical consistency. Finally, initial changed areas are opti-
mized by graph cut. Aijazi et al. (2013) firstly classify MLS data into
permanent and temporary classes, and then construct similarity
maps on the 3D voxels for multiple epoch data fusion to build a
complete 3D urban map.

2.3. Change detection in computer vision

3D change detection has been applied to moving object detec-
tion and urban environment monitoring in computer vision. Yin
and Collins (2007) detect moving objects by a Belief Propagation
approach using a 3D Markov Random Field (MRF). A similar method
has been presented by Košecka (2013) to detect changes from street
scene images. Changes are differentiated as structural, appearance
change or temporary dynamically moving objects. Sakurada et al.
(2013) detected changes of 3D urban structures from a
vehicle-mounted camera. The similarity of the local image patches
is computed from multi-view images. The method is compared
with Multi-View Stereo (MVS) based methods. Many investigations
are based on voxelized space, which performs better than MVS
models as compared by Taneja et al. (2011). Structural changes
have been detected by voxelizing places of interest. Geometric con-
sistencies between voxels are evaluated. Inconsistency indicates a
change in the scene. They extend the work to city-scale in order
to detect changes in cadastral 3D models for facilitating the model
updating process (Taneja et al., 2013). Pollard and Mundy (2007)
store probability distributions for surface occupancy and image
appearance in 3D voxel grids. Then they are updated by new images
based on Bayesian decision theory. The changes are detected by
thresholding the probability to obtain a binary mask. The work
has been extended to 4D by Ulusoy and Mundy (2014). 3D changes
are detected on 3D models in a time series for model updating
instead of rebuilding models at each time.

2.4. Change detection using occupancy grids from robotics

Pagac et al. (1996) use occupancy grids for constructing and
maintaining a map of an autonomous vehicle’s environment for
navigation purposes. A sensor beam is projected on a rectangular
grid assigned probabilities of cells being empty, full and ignorance
outside the beam. Every cell is initialized, mðemptyÞ ¼ mðfullÞ ¼
0 and mðignoranceÞ ¼ 1, then the Dempster–Shafer Theory (DST)
is used to fuse the sensor readings. The DST has proved to outper-
form the Bayesian method which needs to specify all conditional
probabilities even if no a priori information exists. Wolf and
Sukhatme (2004) also use an occupancy grid for SLAM in dynamic
environments. The states of the occupancy grid are defined as
Free, Unknown and Occupied. Two different grids are used to model
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