
Web Semantics: Science, Services and Agents on the World Wide Web 22 (2013) 19–39

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: www.elsevier.com/locate/websem

Ultrawrap: SPARQL execution on relational data
Juan F. Sequeda ∗, Daniel P. Miranker
Department of Computer Science, University of Texas at Austin, United States

a r t i c l e i n f o

Article history:
Received 3 April 2012
Received in revised form
22 August 2013
Accepted 25 August 2013
Available online 2 September 2013

Keywords:
Semantic web
Relational databases
SPARQL
SQL
RDF
RDB2RDF

a b s t r a c t

The Semantic Web’s promise of web-wide data integration requires the inclusion of legacy relational
databases,1 i.e. the execution of SPARQL queries on RDF representation of the legacy relational data.
We explore a hypothesis: existing commercial relational databases already subsume the algorithms and
optimizations needed to support effective SPARQL execution on existing relationally stored data. The
experiment is embodied in a system, Ultrawrap, that encodes a logical representation of the database
as an RDF graph using SQL views and a simple syntactic translation of SPARQL queries to SQL queries on
those views. Thus, in the course of executing a SPARQL query, the SQL optimizer uses the SQL views that
represent a mapping of relational data to RDF, and optimizes its execution. In contrast, related research
is predicated on incorporating optimizing transforms as part of the SPARQL to SQL translation, and/or
executing some of the queries outside the underlying SQL environment.

Ultrawrap is evaluated using two existing benchmark suites that derive their RDF data from relational
data through a Relational Database to RDF (RDB2RDF) Direct Mapping and repeated for each of the three
major relational database management systems. Empirical analysis reveals two existing relational query
optimizations that, if applied to the SQL produced from a simple syntactic translations of SPARQL queries
(with bound predicate arguments) to SQL, consistently yield query execution time that is comparable
to that of SQL queries written directly for the relational representation of the data. The analysis further
reveals the two optimizations are not uniquely required to achieve a successful wrapper system. The
evidence suggests effective wrappers will be those that are designed to complement the optimizer of the
target database.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Wepostulate that by carefully constructing unmaterialized SQL
views2 to create a logical representation of a legacy relational
database as an RDF graph [2], the existing algorithmicmachinery in
SQL optimizers is already sufficient to effectively execute SPARQL
queries [3] on native relational data [4,5]. Thereby, legacy rela-
tional database systems may be made upwardly compatible with
the Semantic Web [6], while simultaneously minimizing the com-
plexity of thewrapping system. This is in contrast to related efforts,
detailed below, that are predicated on preprocessing and/or opti-
mizing the SQL query before sending it to the SQL optimizer [7–9].

To clarify the focus of this research, consider the taxonomy
in Fig. 1. In RDF data management there are efforts that concern

∗ Corresponding author.
E-mail addresses: jsequeda@cs.utexas.edu (J.F. Sequeda),

miranker@cs.utexas.edu (D.P. Miranker).
1 By legacy, wemean software/data already inwide use such that an organization

is not willing to relinquish the investment.
2 Unmaterialized views are virtual tables that are defined by a query over other

tables in the database. They are not stored in the database but can be queried as if
they existed [1].

Triplestores and those that concern legacy Relational Databases.
Triplestores are database management systems whose data model
is RDF, and support at least SPARQL execution against the stored
contents. Native triplestores are those that are implemented from
scratch [10–12]. RDBMS-backed Triplestores are built by adding an
application layer to an existing relational database management
system. Within that literature is a discourse concerning the best
database schema, SPARQL to SQL query translations, indexing
methods and even storage managers, (i.e. column stores vs. row
stores) [13–16]. NoSQL Triplestores are also being investigated as
possible RDF storage managers [17–19]. In all three cases, RDF is
the primary data model.

The research herein is concerned with the mapping of legacy
relational data with the Semantic Web, a.k.a Relational Database
to RDF (RDB2RDF). Within that, the research concerns Wrapper
Systems that present a logical RDF representation of relational data
that is physically stored in an RDBMS such that no copy of the
relational data ismade. It follows that someor all of a SPARQLquery
evaluation is executed by the SQL engine. An alternative is the
relational data is extracted from the relational database, translated
to RDF, and loaded (ETL) into a triplestore [20].

Since both RDBMS-backed Triplestores and RDB2RDF Wrapper
systems involve relational databases and translation from SPARQL

1570-8268/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.websem.2013.08.002

http://dx.doi.org/10.1016/j.websem.2013.08.002
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2013.08.002&domain=pdf
mailto:jsequeda@cs.utexas.edu
mailto:miranker@cs.utexas.edu
http://dx.doi.org/10.1016/j.websem.2013.08.002


20 J.F. Sequeda, D.P. Miranker / Web Semantics: Science, Services and Agents on the World Wide Web 22 (2013) 19–39

Fig. 1. Taxonomy of RDF data management.

Fig. 2. Architecture of Ultrawrap.

to SQL, there is a potential for confusion. The difference is
that RDBMS-backed Triplestores translate SPARQL queries to SQL
queries that are executed on database schemas that model and
store RDF. RDB2RDF Wrapper systems translate SPARQL queries
to SQL queries that are executed on legacy database schemas that
model and store relational data.

Approximately 70% of websites have relational database back-
ends [21]. The sheer number ofwebsites suggests the success of the
SemanticWeb is tied tomaintaining compatibility and consistency
with legacy RDBMSs. Wrapper systems enable Semantic Web
applications to coexist with the legacy applications and avoid
consistency problems simply by not creating a replicated copy of
the data.

In 2008, Angles andGutierrez showed that SPARQL is equivalent
in expressive power to relational algebra [22]. Thus, one might
expect the validity of this research’s postulate to be a foregone
conclusion. However, in 2009, two studies that evaluated three
RDB2RDF wrapper systems, D2R, Virtuoso RDF Views and Squirrel
RDF, came to the opposite conclusion; existing SPARQL to SQL
translation systems do not compete with traditional relational
databases [23,24].

A motivation for this paper is to resolve the apparent
contradiction among the aforementioned papers. Toward that end
we have built a system, Ultrawrap3 [25]. Ultrawrap is organized
as a set of four compilers with the understanding that the SQL
optimizer forms one of the four compilers (Section 3 and Fig. 2).

In a two-step, off-line process, Ultrawrap defines a SQL view
whose query component is a specification of a mapping from
the relational data to an RDF triple representation, the Tripleview.
In our experiments the Tripleview is not materialized, (i.e. the
defining queries are not executed). Thus the view forms a logical
specification of the mapping. Note that this view is extremely
large, comprising a union of select-from-where queries, at least
one query for each column in the relational database. At the onset
of the research we first conducted experiments to confirm that

3 See acknowledgments.

such large view definitions would be parsed by RDBMSs without
throwing an exception.

At runtime, a third compiler translates an incoming SPARQL
query to a SQL query on the Tripleview. The translation is
limited to macro-substitution of each logical SPARQL operator
with its equivalent SQL operator. This is straightforward as each
SPARQL query operator corresponds to an equivalent relational
operator [22].

It follows from the SQL standard that an RDBMS must
correctly execute the translated SPARQL query. Consequently, the
target RDBMS’ SQL system must both use the logical mapping
represented in the Tripleview and optimize the resulting query,
forming the fourth compiler.

Ultrawrap is evaluated using the three leading RDBMS systems
and two benchmark suites, Microsoft SQL Server, IBM DB2 and
Oracle RDBMS, and the Berlin and Barton SPARQL benchmarks
(Section 5). The SPARQL benchmarks were chosen as a conse-
quence of the fact that they derived their RDF content from a
relational source. The Berlin Benchmark provides both SPARQL
queries and SQL queries, where each query was derived indepen-
dently from an English language specification. Sincewrappers pro-
duce SQL from SPARQL we refer to the benchmark’s SQL queries
as benchmark-provided SQL queries. For Barton, the original rela-
tional data is not available and the creator of the benchmark did not
create separate SPARQL and SQL queries. We located replacement
relational data, namely a relational data dump of DBLP and cre-
ated separate SPARQL and SQL queries derived independently from
an English language specification. The benchmark-provided SQL
queries have been tuned for use specifically against each bench-
mark database. We have packaged the new version of Barton for
distribution [26].

By using benchmarks containing independently created SPARQL
and SQL queries, and considering the effort and maturity embod-
ied in the leading RDBMS’s SQL optimizers, we suppose that the
respective benchmark-provided SQL query execution time forms a
worthy baseline, and the specific query plans to yield insight into
methods for creating wrappers.

Our findings include:

• A mapping of relational data to a Tripleview comprising three
columns does not instigate the SQL optimizers to use indexes.
The view was refined to reflect physical schema properties
(Section 3).

• Two known query optimizations, detection of unsatisfiable
conditions and self-join elimination [27], when applied, not only
result in comparable execution times between SPARQL and the
benchmark-provided SQL queries with bound predicates, the
optimizers will often produce identical query plans (Section 4).

• In some cases, a third optimizing transform, join predicate
push down, can be as effective as the detection of unsatisfiable
conditions (Section 5).

• SPARQL queries containing variables that bind to the predicate
position remain troublesome. We relate this problem to an
already described problem concerning the use of views in the
implementation of data integration systems (Section 5).

• The impact of the self-join elimination optimization is a
function of the selectivity and the number of properties in the
SPARQL query that are co-located in a single table (Section 6).

• No system, including those that eliminated self equi-joins,
eliminated the self left outer joins. The SPARQL optional
operator is, by definition, a left outer join (Section 6).

By startingwith a simplewrapper system and evaluating itwith
sophisticated SQL query optimizerswe are able to identify existing,
well understood optimization methods that enable wrappers. The
results provide a foundation for identifying minimal requirements
for effective wrapper systems.



Download English Version:

https://daneshyari.com/en/article/557452

Download Persian Version:

https://daneshyari.com/article/557452

Daneshyari.com

https://daneshyari.com/en/article/557452
https://daneshyari.com/article/557452
https://daneshyari.com

