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Introduction

Randomization tests, also known as approximate
permutation tests or Monte Carlo permutation tests, are
gaining popularity among statisticians and researchers.
They rely on fewer assumptions than do common para-
metric tests (such as the t-test) and so can be used when
requirements for parametric tests are not satisfied, and
they can sometimes be more powerful than common
rank-based nonparametric tests (such as the Mann-
Whitney U test) and so also can be used when typical
nonparametric tests are not desired. They are also quite
intuitive and flexible and often can be implemented
easily with free software packages. Using an example
from previously published data, in this article | intro-
duce readers to a simple randomization test based on
reallocation of group assighments for comparing the
means of 2 groups in a randomized trial.

Data Example

Randomization tests are part of a broader framework
of powerful computer-based methods that rely on
permuting or resampling observed data to draw con-
clusions [1-3]. Although the concept of randomization
tests for analyzing continuous data was introduced by
pioneering statistician R.A. Fisher in the early 1930s, the
methods required calculations that were cumbersome
to do by hand, and these tests never gained much favor
among researchers. Modern computing power, however,
has made randomization tests much more attractive,
and some researchers have since argued that these
class of methods often are superior to traditional tests
for biomedical research [4]. Moreover, recent statistics
education reform has embraced randomization
tests, along with resampling- and simulation-based
approaches in general, as a more transparent and
intuitive path for hypothesis testing [5,6].

Consider this data example to illustrate a randomiza-
tion test of 2 samples for a continuous measure: Frazzitta
et al [7] reported on a study in which patients in the

intensive care unit (ICU) with severe acquired brain injury
were randomized either to conventional physiotherapy or
to an early stepped verticalization protocol. Researchers
collected Disability Rating Scale (DRS) scores at 3 time
points (baseline, discharge from ICU, and discharge from
rehabilitation) for 15 patients in the treatment group and
16 patientsin the control group. For the sake of simplicity,
we will focus here only on DRS improvement from baseline
to ICU discharge for the 2 groups, using data made publicly
available by the authors.

Figure 1 shows a box plot with improvements in DRS
scores for patients in the 2 groups (prepared with the free
BoxPlotR application [8,9]). We can see that most
patients made modest improvements of 5 points or less,
but in each group a few patients made much greater
improvements relative to the rest of their group, which
results in a strong right skew. Results seem to indicate
greater improvements with the treatment than would
otherwise occur under standard care; for example, nearly
one-half of the patients in the treatment group surpassed
even the most improved patient in the control group, and
both mean and median improvements were greater in the
treatment group (8.5 points versus 3.1 points, and
5 points versus 1.5 points, respectively). Yet the data
were not unequivocally in favor of the treatment,
because there was still a substantial overlap of scores
between the 2 groups, especially among the least
responsive patients, with 4 of the control group and 3 of
treatment group patients showing no improvement at all.

Randomization Test Null Hypothesis and Test Statistic

Did the treatment protocol have a different effect on
patients’ improvement on DRS compared with receiving
standard care? To investigate this with a randomization
test, we will set up a reference position that we will
attempt to falsify: What if being assigned to either the
treatment group or to the control group had absolutely
no differential effect on a patient’s improvement between
these 2 time points? If so, then a patient would have had
the same improvement no matter to which group they
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Figure 1. Box plot of original data from Frazzitta et al [7]. Note that
values are computed here so that positive scores indicate a decrease
(improvement) in disability between baseline and discharge from the
intensive care unit. Center lines show the medians; box limits indicate
the 25th and 75th percentiles as determined by R software; whiskers
extend to minimum and maximum values; crosses represent sample
means; width of the boxes is proportional to the square root of the
sample size; data points are plotted as open circles. n = 16, 15 sample
points. DRS, Disability Rating Scale.

were assigned, and it was just random occurrence that
gave us our observed pattern of scores. Furthermore, if
patients’ group assignment had no effect on their scores,
then any random shuffling of the 31 observations between
2 groups would be as likely as any other grouping. It would
then be unlikely to have a situation such as the one we
observed previously, in which the handful of patients with
exceedingly high improvements were all in the treatment
group, but it is still possible. Figure 2 shows a box plot with
one such random shuffling of patient improvement scores.
In this permutation, 4 of the patients who improved more
than 15 points landed in the control group and only one in
the treatment group, and now the group means and me-
dians are closer together.

For our randomization test, the following reference
position will be our null hypothesis: “Being assigned to
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Figure 2. Box plot showing one possible sample under the null hy-
pothesis, in which group membership is equally interchangeable.
Center lines show the medians; box limits indicate the 25th and 75th
percentiles as determined by R software; whiskers extend to minimum
and maximum values; crosses represent sample means; width of the
boxes is proportional to the square root of the sample size; data points
are plotted as open circles. n = 16, 15 sample points. DRS = Disability
Rating Scale.

the treatment group versus control group had no
differential effect on the improvement score for any
patient.” This is a more general starting point than
offered by most parametric null hypotheses (such as for a
t-test), most notably in that it does not mention popu-
lation means of any kind, or in fact a population at all.
This reflects a subtle difference in approach between
permutation-based randomization tests and traditional
tests, the implications of which have been debated by
researchers. In practice, it means that randomization
tests do not require that the studied individuals be a
representative random sample of a population, and that
these tests can be used when assumptions of parametric
methods are violated, such as when samples are small or
drawn from skewed populations.

Notice also that the randomization test null hypothesis
is so general that it does not specify upfront what test
statistic the researcher will use. It simply hypothesizes
that the effects of the treatment and control are equal,
and the researcher is free to choose a meaningful quan-
titative measure to evaluate that statement. We might
decide that if the treatment and control effects were not
in fact equal, then the mean score in each group would
be different. For this we would therefore build onto our
original null hypothesis to ask, “If being assigned to either
group had no effect on a patient’s improvement, then
how often would we see group means as far apart as we
did for these patients (5.4 points)?” Yet that is not the
only measure we could use; if the improvement of the
middle-most patient in each group was most important
for evaluating our treatment, then we would ask how
often under the null hypothesis the group medians would
be as far apart as what we observed. Nearly any quanti-
tative statistic could be used: the difference between the
75th percentiles of the groups, the difference between
the variances, the difference in skewness, and so on. The
difference in group means is often a reasonable choice,
and that is what we will use here.

Now that we have a null hypothesis and a test statistic,
we want to compare our observed results to all the data
permutations that are possible under the null hypothesis.
Unfortunately, there are more than 300 million possible
arrangements of our data (31 patients divided into groups
of 16 and 15 = 31!/16!/15! = 300,540,195), which is
computationally daunting even with today’s computing
power. Therefore, typical practice is to randomly sample
an arbitrarily large number of these shuffled permuta-
tions, record the difference in means between the
2 groups for each shuffling, and then examine how rare
our observed result appears to be.

Example Results and Comparison With Published
Results

Figure 3 shows a histogram of the results of 10,000
such randomizations under the null hypothesis. We
can see that only 80 times of 10,000 did the mean
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