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a  b  s  t  r  a  c  t

Estimating  the  hidden  hemodynamic  states  that  underlie  measured  blood  oxygen  level  dependent  (BOLD)
signals  is an  important  model  inversion  challenge  in  functional  neuroimaging.  Various  filtering  tech-
niques  are  proposed  in  the  literature.  Those  are  Gaussian  type approximated  estimation  techniques  like
Extended  Kalman  filter (EKF),  Unscented  Kalman  filter  (UKF),  Cubature  Kalman  filter  (CKF)  as well  as
stochastic  inference  techniques  like standard  particle  filters  (PF)  and  auxiliary  particle  filter  (APF).  In
this  technical  note,  we compare  particle  filter  type  algorithms  and  Gaussian  approximated  inference
methods.  We  also  implement  a particular  type  of  particle  filter  that  approximates  the optimal  proposal
function  by  the  Extended  Kalman  filter  (PF-EKF).  We  show  that  the  allegation  that  Extended  Kalman  type
approximated  methods  are poor  in  performance  is not  true.  On  the contrary,  they  are  better.  We tested
this  assertion  under  different  parameter  sets,  inputs,  a wide  range  of  noise  conditions  and  unknown
initial  condition.  This  finding  is important  for developing  fast  and  accurate  alternative  model  inversion
schemes,  which  is  the  topic  of  our  subsequent  paper.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The hemodynamic model describes a nonlinear relationship
between the neuronal activity and observed blood oxygen level
dependent (BOLD) signal. This nonlinear relationship is described
by nonlinear differential equations [1–3]. Later, the hemodynamic
model is extended to the stochastic differential equations by
including noise terms [4–6]. With most of the imaging techniques,
it is impossible to obtain a direct measurement of neuronal activ-
ity. After the fast neuronal activity, we observe a response in the
hemodynamic variables like blood flow, blood venus volume and
blood deoxyhemoglobin content [7]. But even then we  do not
directly observe the hemodynamic variables. In the fMRI technique,
we observe the BOLD signal, which is a nonlinear combination of
the blood venus volume and blood deoxyhemoglobin content [5].
Hence it is important to understand the nature of the hidden hemo-
dynamic states from the observed BOLD signal.

In this technical note, we examine the implementation and
performance of state estimation techniques for the fMRI signals.
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From the BOLD signal, by using the functional representation of
the hemodynamic model, we  perform state estimation.

We work with the continuous time state space and observation
formulation. Subsequently we  convert the model to the discrete
time equivalent form. Hence, we describe the system in the most
general setting as:

ẋ(t) = g(x(t), �, u(t)) (1)

y(t) = h(x(t), �, u(t)) (2)

Here, g is the nonlinear state transition function, h is the nonlin-
ear measurement function. Both the functions have arguments as
the hemodynamic state xt at time t, parameter set � and neuronal
input u(t). Hemodynamic state xt at time t is a four-dimensional
vector xt ∈ R

4. The BOLD signal yt at time t is described as yt ∈ R.
Similar to Johnston et al. [5] we  perturb the system with Wiener

noise and discretize the system by the Euler–Maruyama Method
and arrive the discrete time form of the above nonlinear differential
equation. We  define the discrete time instants as t = tk � k�t, k = 1, 2,
. . ..  The state variables, input and measured BOLD signals are dis-
cretized by defining xk+1 = x(tk + �t), xk = x(tk), uk = u(tk), yk = y(tk).
By using these definitions we arrive the following nonlinear dis-
crete time state-space model.

xk+1 = f (xk, �, uk) + wk (3)
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yk = h(xk, �, uk) + vk (4)

where f is:

f (xk, �, uk) = xk + �tg(xk, �, uk) (5)

and

wk = N(0, Qk) (6)

Here, f is the nonlinear state transition function, and h is again
the nonlinear measurement function. The equality in Eq. (5) is an
approximate equality because, under Euler–Maruyama approxi-
mations, the discrete state transition function is the solution to Eq.
(1). This time, we have the discretized version of the state xk where
the time index is k. The state is a vector xk ∈ R

4. The measured BOLD
signal yk is from the set yk ∈ R. The state noise wk is of Gaussian
type with N(0,  Qk). The measurement noise vk is also Gaussian type
with N(0,  Rk). One distinctive feature in the algorithms for PF and
APF is that we can work with non-Gaussian noise also. This feature
is not present in most of the model inversion techniques used in
the fMRI literature. We  denote by y1, y2, . . .,  yN or y1:N the discrete
time observation sequence of length N. Given the (neuronal) input
u1:N, plausible assumptions about the noise and N observations y1,
y2, . . .,  yN or y1:N, we want to estimate x1:N.

1.1. Estimation of the states

Due to nonlinearity of the system it is difficult to make proba-
bilistic inferences from the observed data. In this technical note, our
aim is to find the state estimation of type p(xk|y1:k), which is called
filtering. In the filtering problem, for the time step k we take into
account only the observations up to the time k. From these obser-
vations we calculate p(xk|y1:k). When the new observation arrives,
we find the new conditional pdf p(xk+1|y1:k+1). Filtering disregards
the information contained in the future values of y for the state x
at time step k. However, in the smoothing we take into account all
observed sequences. This provides us more accurate results for the
state estimation, but at the cost of additional computation. Even
the smoothing techniques requires the calculation of the filtering.
For that reason, we concentrate on implementing a particular filter-
ing technique to obtain the most accurate state estimation. Since
it is impossible to calculate analytic expression for the p(xk|y1:k),
various approximation techniques are proposed.

1.2. Gaussian approximated inference

We  have closed form expression for basic state-space systems
that are linear and have Gaussian shaped noise. For such cases,
Kalman filter [8] and smoother algorithms [9] work optimally. For
linear systems, the form of the filtering pdf is expressed exactly as
Gaussian pdf’s.

p(xk|y1:k) = N(x̂k|k; Pk|k) (7)

Here x̂k|k is the recursive state estimate of the filtering at time k
respectively. Similarly, Pk|k is the state covariance for the filtering
at time k.

For Gaussian approximated methods, we can list Extended
Kalman filter (EKF) [10,11], Local Linearization filter (LLF) [4],
Unscented Kalman filter (UKF) [12–14] and Cubature Kalman fil-
ter (CKF) [15], which is a specific case of UKF [16]. These methods
approximate conditional estimates of the states as Gaussian pdf.

p(xk|y1:k) ≈ N(x̂k|k; Pk|k) (8)

For the Extended Kalman filter algorithm, the state transition
and measurement functions are linearized with a first-order Taylor
series around the state estimates [17]. Approximating the nonlinear
system with a linear state space form, the standard Kalman filter

is applied. The LLF filter is the same as EKF except, in the predic-
tion update of the state, LLF uses the discretization proposed by
Jimenez et al. [18]. In UKF and CKF, Gaussian pdf’s are represented
by deterministically chosen points called sigma points and cuba-
ture points for UKF and CKF, respectively [19]. For prediction and
measurement updates of the states, the deterministic points are
transferred from the nonlinear state transition and measurement
functions, respectively. The positive aspect of UKF/CKF is that there
is no need for the calculation of the Jacobian matrix of the state and
measurement functions.

1.3. Sample based inference

In stochastic or sampling based schemes we aim to approxi-
mate the posterior or target density with sampled distributions of
particles. There are two  broad categories of stochastic inference
algorithms: Sequential Monte Carlo (SMC) methods and Markov
Chain Monte Carlo Methods (MCMC). Since we will be dealing
with dynamical systems, we deal with Sequential Monte Carlo
methods. In SMC, the density functions are approximated by gen-
erating samples [20]. The error in these algorithms are decreased
by increasing the sample number. For that reason, these algorithms
can provide more accurate results compared to Gaussian approx-
imated approaches, despite the increased computation time. In
SMC, we  sample from an easy to sample proposal function. By use
of a technique called Importance Sampling, we change the weight
associated with the sample (particle) to compensate for the dif-
ference between the target and proposal function [20]. We  note
that the target function is our desired posterior density p(xk|y1:k).
It is crucial that we choose the proposal function such that we  can
sequentially update the state samples by each new observation.

1.4. Hemodynamic state estimation literature

For the deterministic type inference algorithms, several
attempts were presented in the fMRI model inversion literature. In
the first attempts at applying the fMRI model inversion techniques,
there was zero process noise in the state transition equations [1].
Friston et al. modeled first the relation between the input and
output by Volterra Kernels [1]. Subsequently, Friston performed
a Bayesian estimation technique to estimate the parameters [21].
Still, the assumption was zero state noise in the hemodynamic state
equations. Riera et al. [4] utilized a type of Extended Kalman filter
(EKF). They introduced process noise in their method for the hemo-
dynamic state equations. They performed EKF via the discretization
method of Jimenez et al. [18]. They did not, however, use the widely
used Euler–Maruyama discretization method. UKF is performed
by Hu et al. for the system identification and state estimation of
hemodynamic variables [22]. Riera et al. and Hu et al. performed
these techniques in a filtering style [4,22]. They did not perform any
smoothing algorithm. Recently, Havlicek et al. [17] performed the
Square-root Cubature Kalman filter (SCKF) and Smoother (SCKS)
for the system identification and hemodynamic state estimation.
In this technical note, we also implemented SCKF, which is the
numerical stable form of Cubature Kalman filter.

In the fMRI literature, Johnston et al. [5] made direct usage
of the particle filters. Murray and Storkey implemented particle
smoothers in the fMRI literature by using suboptimal particle filters
[23].

Another class Bayesian filtering schemes as been introduced
recently, called Generalized filtering. These are Bayesian filter-
ing schemes in generalized coordinates of motion [24,25,6]. The
schemes above can be considered special cases of Generalized fil-
tering that only consider posterior densities over hidden states and
their first order motion. In Generalized filtering, high order motion
is also considered. This allows one to formulate Bayesian filtering
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