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a  b  s  t  r  a  c  t

This paper  considers  the  problem  of  removing  unwanted  noise  from  a gaze  tracking  signal  real-time.
The  proposed  remedy  is  a linear  dynamic  model  for the  gaze  and  a  Kalman  filter  for estimating  its opti-
mal  solution  in  closed  form.  The  location  and  velocity  of gaze  are  treated  as independent  parameters
of  the  model.  Two  alternative  methods  for estimating  the  velocity  are  presented;  the  first  is based  on
the difference  in  the  subsequent  eye  images  and  the  second  on  the  PCA  model  and  an  affine  mapping
from  the  principal  component  space  to the  gaze  space.  The  covariance  matrix  of  the  measurement  noise
distribution  is modified  real-time  based  on the estimated  velocity.  The  presented  filtering  algorithm  can
be utilized  with  any  eye  camera  based  gaze  tracker.  Here,  its ability  to  decrease  noise  of two  published
gaze  tracking  methods  is  demonstrated.

©  2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

As human’s gaze reveals a person’s focus of (visual) attention
and interest, gaze tracking has a number of potential usages. Exam-
ple fields include market research (e.g., how a person observes
certain package), education (e.g., an expert can demonstrate
where she looks while performing a professional operation), safety
(e.g., how well a bus driver observes traffic while driving), and
human–computer interaction (e.g., replacing a computer mouse
with gaze). Gaze tracking systems usually use eye camera(s) for
assessing the gaze. A reliable and well-performing gaze track-
ing system should have high accuracy and precision. Accuracy is
defined as the average distance between the gaze point, estimated
by the gaze tracking system, and the actual gaze point whereas
precision is defined as the amount of fluctuation around the mean
value, usually in terms of root-mean-square (RMS) value of sub-
sequent distances [1].1 For instance, if gaze is used as an input for
activating symbols on a display, such as entering passwords [2], a
too noisy gaze signal will make the usage impractical.

Various methods for improving the precision, i.e., decreasing
the fluctuation have been presented. For instance, Kumar et al. [3]
try to improve precision real-time by detecting saccades, using a
threshold for the derivative of the signal, and smoothing fixations
separately – this kind of approach is prone to errors with small sac-
cades and smooth pursuits which are defined as the slow motion
that eye makes when following a moving object [1]. Other similar
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1 In this paper, increased accuracy and precision means lower error and RMS.

methods, with differing filtering shapes, were reviewed in [4]. The
Kalman filter has also been used; Ji and Yang [5] use a Kalman filter
for tracking the pupil and Komogortsev and Khan [6] use a Kalman
filtering directly on the gaze signal. These works, however, had no
observation model for the velocity of the pupil or gaze point which
leads to problems if the gaze signal contains severe noise. The
method of Komogortsev and Khan [6] was  outperformed by other
methods in the comparison of Špakov [4] in terms of accuracy and
precision.

This paper presents a well-founded Kalman filter based solu-
tion for smoothing the gaze signal, recorded with any (video-based)
gaze tracking device. The model has observation models for both
location and velocity of the gaze point. For best performance, the
location and velocity measurements should be independent. Here,
two methods for estimating the gaze velocity are presented. The
simpler one uses the pixel-wise difference between subsequent
eye images as the amount of change. The other method constructs
a principal component based model between the eye image and
gaze point; this method can also be used as such for a coarse
but lightweight robust gaze estimator. The covariance matrix of
the measurement noise is modified real-time so that there would
be less filtering during saccades than during fixations. The results
show that the presented solution gives a manyfold increase in the
precision when applied to the signal of two  published gaze tracking
methods.

2. Method

This section presents the dynamic model of gaze location and
velocity and shows how they can be filtered with a Kalman filter.
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Fig. 1. An artificial signal (black line) which is filtered (red line) with a simple IIR filter: x̃t = wx̃t−1 + (1 − w)xt , having a large value for w on the left panel and small on the
right  panel. (For interpretation of the references to color in this figure legend, the reader is referred to the web  version of this article.)

The observed gaze point can be reported by any gaze tracking algo-
rithm. For measuring the gaze velocity, two alternative schemas are
given, based on the eye difference between subsequent frames and
eigen eyes which are the principal components of eye images. The
purpose of the gaze velocity measurement is to give information
about the movement of the eye; at simplest, immobility of the eye
can inform the system that the gaze point is not moving and the
possible observed fluctuation of the gaze point should be treated
as measurement noise.

First, the problem statement is presented and then the dynam-
ical model and its Kalman filter solution. The following two
subsections present the two methods for estimating the velocity
and the last subsection presents the method for modifying the
measurement noise covariance.

2.1. Problem statement

Any signal can be filtered real-time (that is, without causing a
delay) as a weighted sum of the latest and past observations or
estimates. A single pole IIR filter is one of the simplest such filter:

x̃t = wx̃t−1 + (1 − w)xt (1)

where xt is the input sample of the signal at time t and x̃ is  the
filtered signal. Giving an infinitely long signal which fluctuates
around a constant value, the filter (1) converges to that value. How-
ever, with a changing signal, such as the gaze signal, this simple
approach leads into problems, as is illustrated in Fig. 1; the weight
must be large enough to achieve the desired level for filtering which
causes the estimate to be inaccurate for some period after the sig-
nals has changed. If the weight is decreased, the difference between
the signals also decreases with a cost of the filtered signal follow-
ing the noise too much. Having a more complex filter or a FIR filter
fails to solve the problem. One could build a heuristic algorithm
which adapts w according to the derivative of the signal. However,
if the signal has a varying noise distribution with occasionally large

fluctuation, as a gaze tracking signal often has, such an approach
would also fail as the noisy samples (like the three “spikes” in Fig. 1)
would probably be considered as signal changes.

Hence, the problem is to (automatically) infer the correct
amount of filtering. This paper presents an algorithm which solves
the problem. The algorithm is based on the Kalman filter method
which recursively produces a statistically optimal closed form point
estimate for the unknown state of a linear dynamic model which
has Gaussian distributions for process and observation noises (see,
e.g., [7]). Kalman filter can predict the state also in case of missing
observations which occasionally occur in gaze tracking. Addition-
ally, as opposed to heuristically detecting saccades and filtering the
signal in between them (i.e., fixations), Kalman filter is a theoreti-
cally sound method which has been used in probably thousands of
signal processing applications.

The presented method bases also on the idea that the velocity
observations should be independent of the actual signal to be fil-
tered. If the velocity would be estimated as the derivative of the
location, the velocity estimate would follow the noise of the gaze
tracking signal as in the right panel of Fig. 1. Instead, the gaze veloc-
ity is computed by using the whole eye image as input. If the gaze
point is estimated by detecting the pupil and possibly glints of one
or more LED sources, as it typically is [8–12], the velocity estimate
becomes independent on the gaze location estimate. This leads to
much more robust performance as opposed to estimating the veloc-
ity from the gaze points. For instance, a LED glint that is suddenly
falsely detected gives an erroneous gaze location; by independently
assessing from the eye image the amount of change in the gaze
location, such false location estimate can be filtered out.

Lowering the fluctuation (by filtering) will improve the preci-
sion by definition. It will also improve the accuracy if the distance
between the mean value of the signal and the real value is smaller
than the amount of fluctuation. This simple phenomenon is illus-
trated in Fig. 2 where the mean signal represents a “perfectly”
filtered signal.

Fig. 2. An artificial noisy signal (thin black line), its mean value (thick red line), and the “true” value (dashed blue line). Replacing the signal with its mean value (”perfect
filtering”) naturally always improves the precision. In the left panel, the accuracy is better for the mean value than for the signal because the true value is within the noise
level  so the average distance between the mean and the true value is smaller than the average distance between the signal samples and the true value. In the right panel, the
accuracies are the same. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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