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a  b  s  t  r  a  c  t

General  anesthesia  is required  for some  patients  in  the  intensive  care  units  (ICUs)  with  acute  respiratory
distress  syndrome.  Critically  ill patients  who  are  assisted  by  mechanical  ventilators  require  moderate
sedation  for  several  days  to  ensure  cooperative  and  safe  treatment  in  the  ICU,  reduce  anxiety  and  delirium,
facilitate sleep,  and  increase  patient  tolerance  to endotracheal  tube  insertion.  However,  most  anesthetics
affect  cardiac  and  respiratory  functions.  Hence,  it  is important  to  monitor  and  control  the  infusion  of
anesthetics  to  meet  sedation  requirements  while  keeping  patient  vital  parameters  within  safe  limits.  The
critical  task  of anesthesia  administration  also  necessitates  that  drug  dosing  be  optimal,  patient  specific,
and  robust.  In  this  paper,  the concept  of reinforcement  learning  (RL)  is used  to develop  a  closed-loop
anesthesia  controller  using  the  bispectral  index  (BIS)  as  a control  variable  while  concurrently  accounting
for  mean  arterial  pressure  (MAP).  In  particular,  the  proposed  framework  uses  these  two  parameters  to
control  propofol  infusion  rates  to regulate  the BIS  and  MAP  within  a  desired  range.  Specifically,  a  weighted
combination  of  the  error of  the  BIS  and  MAP  signals  is considered  in the  proposed  RL algorithm.  This
reduces  the computational  complexity  of  the  RL  algorithm  and consequently  the  controller  processing
time.

©  2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Recent research in clinical pharmacology has focused on identi-
fying “best practices” for ensuring patient safety by maximizing
the desired drug effect and minimizing the drug induced side
effects. This is particularly important when developing paradigms
for anesthetic drug dosing. Surgical patients typically require deep
sedation over a short duration of time. However, ICU patient seda-
tion, especially patients assisted by mechanical ventilation to treat
pulmonary insufficiency, can be more challenging [1]. Critically ill
patients who are assisted by mechanical ventilators require mod-
erate sedation for several days to ensure cooperative and safe
treatment in the ICU. Moreover, clinical research shows that closed-
loop control of anesthetic drug administration can have positive
outcomes in terms of patient safety, early recovery, reduced treat-
ment cost, and effective and practical use of clinician expertise
[1–4].

∗ Corresponding author. Tel.: +974 44034224.
E-mail addresses: regina.ajith@qu.edu.qa (R. Padmanabhan),

nader.meskin@qu.edu.qa (N. Meskin), wm.haddad@aerospace.gatech.edu
(W.M.  Haddad).

When continuous anesthetic drug infusion is used, a proto-
col incorporating daily awakening from sedation is advocated for
minimizing sedative accumulation, slowing the build up to drug
tolerance, and reducing the length of ICU stay [5]. Accounting for
the residual drug effect of prior sedation (i.e., the effect of the drug
left over due to sedation before interruption) while calculating the
drug dose to be administrated after the period of daily interrup-
tion of sedation, further restricts the probability of oversedation
and the associated complications. Ideally, anesthetic drug dos-
ing should account for the patient’s physiological condition, drug
interaction due to coadministration of several anesthetic and phys-
iologic drugs, residual drug effect due to daily interruption from
sedation, physiological disturbances such as hemorrhage or renal
impairment, interpatient variability, and changes in the character-
istics of the monitoring devices and the infusion pump apparatus.

Optimal drug dosing that considers the aforementioned factors
is essential since oversedation or undersedation is not acceptable.
Oversedation can cause hypotension, prolonged recovery time,
delayed weaning from mechanical ventilation, ileus, nausea, and
immunosuppression; whereas undersedation can cause anxiety,
agitation, hyperoxia, tachycardia, myocardialischemia, atelectasis,
tracheal tube intolerance, and infection [6]. Achieving acceptable
clinical effects, while avoiding or minimizing undesired effects, is
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a major objective in general anesthesia. Furthermore, open-loop
control can be tedious, imprecise, and time-consuming. Hence,
closed-loop control for anesthesia administration is imperative to
improve quality of medical care and to restrain the increasing cost
of health care [1].

Currently, intraoperative anesthesia administration is facili-
tated manually or is assisted by an open-loop target controlled
infusion (TCI) pump, which is programmed using a nominal patient
model to calculate the required drug dose. However, due to the
interdisciplinary (medicine–mathematics–engineering) nature of
the problem and the associated clinical and ethical constraints in
performing clinical experiments, there is a lack of accurate math-
ematical models that characterize the drug disposition (pharma-
cokinetics) and the drug effect (pharmacodynamics) in the human
body. The case of mechanically ventilated critically ill patients in
the ICU is challenging since such patients require administration of
multiple drugs to regulate key physiological variables, such as the
level of unconsciousness, heart rate, mean arterial pressure (MAP),
respiratory rates, and other vital parameters within desired limits.

A few clinical and in silico trials have been conducted to validate
various closed-loop control strategies for anesthesia administra-
tion [2–4,7]. Due to system complexity and system uncertainty,
however, fixed-gain linear controllers have proved inadequate
[1,2]. Investigations using model predictive controllers (MPC)
for surgical patients with system constraints have also proved
deficient in terms of prolonged parameter identification time and
model dependence [8]. Even though optimal control strategies can
offer “the best” solution for a given system with a given set of state
and control constraints, the method is model-based and requires
refinements to address system uncertainties and system distur-
bances [9,10]. In general, adaptive disturbance rejection controllers
can work well without an accurate system model in the presence
of system uncertainties and system disturbances [11,12]. However,
adaptive controllers cannot directly address system optimality con-
siderations. Hence, it is imperative to develop control techniques
that can account for system modeling uncertainty and system
disturbances, while providing optimal solutions that improve the
reliability and applicability of closed-loop control for ICU sedation.

Reinforcement learning (RL) is a developing and promising
approach which offers an ideal framework for on-line identifica-
tion and control of complex uncertain nonlinear dynamical systems
[13]. RL allows for the learning of optimal actions without the
knowledge of the complete system dynamics (or system distur-
bances). Moreover, since the controller (RL agent) design is per-
formed by interacting with the system, unknown and time-varying
dynamics as well as changing performance requirements can be
accounted for by the controller. RL exploits the computational effi-
ciency and speed of digital computers to stochastically employ all
possible control actions and assesses a best or optimal action.

Reinforcement learning-based feedback control methods have
demonstrated promising performance in robot control, wind tur-
bine speed control, image evaluation, and autonomous helicopter
control [14,15]. In medical pharmacology, reinforcement learning
has been used for long-term clinical planning tasks, such as the
optimization of erythropoietin dosage for the treatment of ane-
mia  in hemodialysis patients [16]. RL methods basically explore the
response of a system for every possible action and then learn the
optimal action by evaluating how close the last action drives the
system towards a desired state. The controller then exploits the
learned optimal policies. RL is suitable for drug disposition control
scenarios as it does not rely on a system model and learns optimal
control policies based on the response to the control actions (drug
infusion) of the system.

In [17], the authors discuss RL-based optimal control of hyp-
nosis for intraoperative patients. Specifically, the authors modeled
the drug disposition system as a discrete-time system with three

states corresponding to �BIS > 0, �BIS < 0, and �BIS = 0, where �BIS
denotes the change in the bispectral index (BIS); and three control
actions (propofol dose) u corresponding to 0 mg,  20 mg, or 40 mg.
The BIS index is derived from the electroencephalogram and pro-
vides a measure of depth for anesthesia [18]. In [19], the authors
present the first clinical trial for closed-loop control of anesthesia
administration using reinforcement learning on 15 human volun-
teers. In this study, RL demonstrated patient specific control of
anesthesia administration marked by improved control accuracy
as compared to performance metrics of other studies reported in
the literature.

Surgery is a highly uncertain and hostile environment. Sedation
requirements during surgery typically involve moderate to deep
sedation for a short duration. In the case of ICU sedation, how-
ever, even though sedation requirements are light to moderate,
they usually require long term (for several days) continuous infu-
sion of anesthetics; and since the patient is critically ill, several
life supporting drugs are typically required. Hence, drug interac-
tion can be a factor. In addition, sedated patients may  require daily
interruption from sedation to reduce drug tolerance development
and overall drug dosage. Hence, residual drug effect due to prior
sedation periods need to be accounted.

Furthermore, long term anesthetic infusion often results in
drug habituation, and hence, patient pharmacologic response may
change. Hence, the case of ICU sedation is challenging and neces-
sitates long term maintenance of moderate sedation along with
the regulation of vital physiological parameters of critically ill
patients. Propofol administration lowers sympathetic tone and
causes vasodilation, which can decrease preload and cardiac output
and consequently lower the mean arterial pressure and other inter-
related hemodynamic parameters. This can lead to blood pressure
instability, overdose, and cardiovascular collapse [20]. Therefore,
ensuring a desired range for MAP  as one of the important hemody-
namic parameters is vital during propofol infusion [21,22].

The main objective of this paper is to apply reinforcement learn-
ing for the control of continuous intravenous infusion of propofol
for ICU patients by utilizing the BIS index, while simultaneously
regulating the mean arterial pressure at a desired range. Specif-
ically, a weighted combination of the error of the BIS and MAP
signals is considered in the proposed RL algorithm. This reduces the
computational complexity of the RL algorithm and consequently
the controller processing time. The proposed method is tested by
means of simulations on 30 randomized simulated patients. More-
over, the paper presents a general framework to utilize RL-based
methods such as the Q-learning algorithm for the control of multi-
ple parameters in nonlinear dynamical systems.

The remainder of the paper is organized as follows. Section 2
presents a RL-based control problem for dynamical systems and
illustrates the development of an optimal control policy using a
Q-learning algorithm. In addition, the pharmacokinetics and phar-
macodynamics of the drug propofol in human body are discussed. In
Section 2.4, the implementation of a reinforcement learning-based,
closed-loop control predicated on BIS and MAP  measurements
is presented. Then, in Section 3, simulation results are provided
and the performance of the proposed framework is evaluated. In
Section 4, the limitations of this study are discussed. Finally, in
Section 5, conclusions and recommendations for future work are
presented.

2. Methods

In this section, the development of a RL-based control agent for
the control of dynamical systems is presented. Subsequently, the
pharmacological model of propofol with respect to the bispectral
index and mean arterial pressure is introduced. This model is used



Download English Version:

https://daneshyari.com/en/article/557573

Download Persian Version:

https://daneshyari.com/article/557573

Daneshyari.com

https://daneshyari.com/en/article/557573
https://daneshyari.com/article/557573
https://daneshyari.com

