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a  b  s  t r  a  c  t

This  paper  presents  the application  of  a bio-inspired  method  for optimizing  a lifelike  vectorcardiographic
(VCG)  model.  During  the model  estimation,  a Particle  Swarm  Optimization  (PSO)  seeks the optimal  com-
bination  of  all parameters  that  maximize  the  correlation  coefficient  (r) and minimize  the  Mean  Squared
Error  (MSE)  between  the  synthetic  and  directly  measured  VCG  leads.  The  proposed  method  was  tested
on 52 different  VCG  records  annotated  as  a  healthy  control  (HC)  from  PTB  database.  156  models  were
individualized  without  any  previous  analysis  of  the  waves  of the  original  records.  The  PSO  method  auto-
matically  provides  very  realistic  models  with  a correlation  coefficient  r > 0.995  and  MSE  <  0.0005  mV2 for
152  of the  156  VCG  signals.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Electrocardiography (ECG), one of the most important diagnos-
tic tools used in clinical cardiology, is based on measuring the
electrical activity of the heart from the surface of the human body.
The most common recording method consists of 12 leads which
correspond to projections of electrical activity to different direc-
tions in the cardiac space. During the cardiac cycle, electrochemical
processes, called depolarisation and repolarisation, of the cardiac
cells occur in a particular region of the heart. These processes cause
individual patterns called P, Q, R, S, T, and occasionally present a U
wave in electrocardiograms (ECG).

The basic mathematical model describing the cardiac cycle is
based on a moving dipole (MD). MD  is a resulting vector of the
electromotive forces of the individual cardiac cells during cardiac
activity [9]. This vector is represented by 3 orthogonal components
and time. The direct measurement of these components is the basis
of vectorcardiography (VCG). Three orthogonal leads X, Y and Z are
measured as projections into three orthogonal directions [1,8].

MD describes the magnitude and direction of the de/
repolarisation waves in cardiac muscle and in three-dimensional
space and is represented in the form of P, QRS and T loops [8].
Conventional ECG leads are computed from this model using the
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transformation method. The relationship between ECG and VCG
can be described by a transformation matrix. The most common
methods are inverse Dower and Kors transformation which differ
only in the coefficients of the matrix [2].

An approximation of the MD can be used for generating a realis-
tic artificial ECG/VCG. These artificial signals are used in many areas
of biomedical research. The most common use is for testing new
algorithms in pre-processing (filtration, segmentation), compres-
sion and analysis of the ECG [5,6]. New algorithms for classifying
ECG patterns [16] are usually tested on real records and an annota-
tion of the data is required. For example, for 24-h records, a Holter
monitor can collect more than hundreds of thousands beats, which
are impossible to analyse manually and comparing new algorithms
will only be possible with existing methods. However, with a syn-
thetic ECG generator, it is possible to generate long realistic records
with a known annotation that includes all possible pathologies and
artefacts [4].

It is also possible to generate variances in the ECG with
the model, such as an abnormal cardiac rhythm, respiration
effects, ectopic beats and artefacts [7]. Pathological changes, such
as myocardial infarction (MI), hypertrophy etc. are reflected as
changes to the shape and intervals of the individual waves or
segments in the ECG. One cardiac cycle of the model can be indi-
vidualized to an actual ECG/VCG record by using the approximation
model [3].

The Gaussian function is the most common way  to approxi-
mate individual waves [3–7]. Parameters of the Gaussian function
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then correspond to the shape of the resulting waves. For fitting of
these parameters to real beats, a gradient descent method is used
[4,7]. But this method requires a previous analysis of the ECG and
the approximation often fails in some non-Gaussian shapes of the
waves. However non-Gaussian shapes are common in ECG records,
especially in pathology records. Precisely expressing the pathology
in the model is crucial for further use of the model.

Non-symmetrical waves are often present even in healthy
records, and this cannot be approximated with only one Gaussian
function. Multiple Gaussian functions can approximate both non-
symmetry and bipolar waves (often T waves). But the number of
Gaussian functions needed for representing the entire beat varies
depending on records and leads. For MI  records, often elevation or
depression of the ST segment is present in some leads. It is also pos-
sible to approximate using several Gaussian functions with specific
parameters but the fitting process is complicated because there is
no previous knowledge about the number and/or positions of the
Gaussian functions.

This paper focuses on the design of an automatic method for
identifying the positions and parameters of Gaussian functions
to accurately approximate the MD  without having any previous
knowledge of the VCG record.

2. Materials and methods

2.1. Study population and preprocessing

Tested records were chosen from a PTB diagnostic database that
was recorded from healthy volunteers and patients with different
heart diseases at the Department of Cardiology of University Clinic
Benjamin Franklin in Berlin, Germany. The database contains 549
records from 286 subjects. Each subject is represented by one to five
records. Each record includes 15 simultaneously measured signals:
the conventional 12 leads together with the 3 Frank VCG. Each sig-
nal was digitized at 1000 samples per second, with 16 bit resolution
over a range of ±16.384 mV  [11–13].

There are 52 records measured on different patients annotated
as healthy control (HC) in the PTB. All these records were used to
test of the proposed algorithm.

The records were band-passed using an FIR filter with a linear
phase response in range from 0.5 to 150 Hz (−3 dB). From the fil-
tered records, representative VCG beats excluding ectopic beats and
artefacts were chosen. The beginning of the beat was defined as
distance from the R wave: TR − 0.4Tmin(RR) and the end of beat was
defined as TR + 0.6Tmin(RR), where TR is the time of presence of an R
wave and Tmin(RR) is the minimal pulse period for the record. The
positions of R waves were detected using Pan–Tompkins’ algorithm
[19] from a V signal (1). Individual representative beats were aver-
aged for each VCG lead and then an isoelectric line was  zeroed by
subtracting the median value from each averaged beat.

V =
√

X2 + Y2 + Z2 (1)

2.2. Vectorcardiographic model

In electrocardiology, models are used to describe potentials at
electrodes placed on the thorax. The best-known model is a dipole
model which is the basis of VCG. Other models are based on multi-
pole expansions or double layer representation [8,9].

The MD  is commonly referred to as the (time-dependent) heart
vector M(t). As each wave of de/repolarization spreads through
the heart, the heart vector changes in magnitude and direction as
a function of time [9,10]. MD  M(t) is given by three orthogonal

components Xm, Ym and Zm. With each component, it is possible
to approximate the sum of n Gaussian by the following functions:
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is the relative phase with phase �0 ∈ [0, 2�].
Each Gaussian function is described by three parameters: ampli-
tude ax

i
, width bx

i
and phase �x

i
which corresponds to the position

of the ith Gaussian function in the range from 0 to 2� in the lead X.
To fit the model to an observation, an optimization method

should be performed to set the ai, bi and �i parameters.

2.3. Design of the objective function

The authors in [4,7] used a gradient descent method to fit the
model to a real record. This method is based on minimizing the MSE
between the model based Xm and the directly measured Frank lead
XF by the following equation:

MSE  = 1
n

∑
(Xm − XF )2. (3)

A further important and common parameter indicating similar-
ity between two  signals is the Pearson correlation coefficient r. The
correlation indicates the degree of similarity between two signals
and is independent of the differences in their amplitudes

r =
∑

(XmXF )√∑
X2

m

∑
X2

F

(4)

For the purpose of optimizing the VCG models, the combination
of these two parameters is used. The correlation can take values
in range of r ∈ [−1, 1] and MSE  ≥ 0. For identical signals r = 1 and
MSE  = 0. Both these parameters are combined in the objective func-
tion (5). When the objective function (5) is maximized, the MSE  is
also maximized and r is minimized at the same time.

G (r, MSE) = r
101/(MSE+1)

10
. (5)

For identical signals G = 1. An optimization method looks for the
optimal combination of the parameters by maximizing the objec-
tive in the following function:

max
ai,bi�i

(G) . (6)

2.4. Fitting model to features

Each beat including P, Q, R, S and T waves, can be represented
as the sum of n Gaussian functions. A demonstration of this prin-
ciple is presented in Fig. 1. Each wave is formed by one Gaussian
function. The number and position of Gaussian functions can easily
be determined based on a previous analysis of the signal and the
parameters ai and bi can be optimized using the gradient descent
method.

Non-symmetrical and bipolar waves are always approximated
using two  or more Gaussian functions. Elevation/depression of the
ST segment and other extra shapes such as a pathological R wave
should be automatically recognized and approximated using multi-
ple Gaussian functions. The optimal number of Gaussian functions
varies in records, leads and individual waves. The maximal number



Download English Version:

https://daneshyari.com/en/article/557574

Download Persian Version:

https://daneshyari.com/article/557574

Daneshyari.com

https://daneshyari.com/en/article/557574
https://daneshyari.com/article/557574
https://daneshyari.com

