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a  b  s  t  r  a  c  t

Muscle  fiber  conduction  velocity  (MFCV)  can  be  measured  by estimating  the  time delay  between  surface
EMG  signals  recorded  by  electrodes  aligned  with  the  fiber  direction.  In  the case  of  dynamic  contractions,
the  EMG  signal  is highly  non-stationary  and  the time  delay  between  recording  sites  may  vary  rapidly  over
time.  Thus,  the  processing  methods  usually  applied  in the  case  of  static  contractions  do  not  hold  anymore
and  the  delay  estimation  requires  processing  techniques  that  are  adapted  to  non-stationary  conditions.
The  current  paper  investigates  several  methods  based  on  time-frequency  approaches  or  adaptive  filtering
in order  to  solve  the  time-varying  delay  estimation  problem.  These  approaches  are  theoretically  analyzed
and  compared  by Monte–Carlo  simulations  in  order  to  determine  if  their  performance  is sufficient  for
practical  applications.  Moreover,  results  obtained  on  experimental  signals  recorded  during  cycling  from
the vastus  medialis  muscle  are  also shown.  The  study  presents  for the first time  a  set of  approaches  for
instantaneous  delay  estimation  from  two-channels  EMG  signals.

©  2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The estimation of time delays is an important topic in sev-
eral biomedical applications. For example, muscle fiber conduction
velocity (MFCV) can be measured by estimating the time delay
between surface EMG  signals recorded by electrodes aligned with
the fiber direction (for a recent review, see [1]). The measure of
MFCV has been shown to be relevant in the diagnosis of patholo-
gies [2], fatigue [3] and in the detection of neuromuscular system
adjustments due to exercise [4]. A major objective of these stud-
ies is to understand the motor unit (MU) recruitment strategies
of the motor control. Most of these studies were conducted dur-
ing static activity. However, it has been demonstrated that the MU
recruitment was task-dependent [5] suggesting that this recruit-
ment was different between dynamic and static contractions. Any
results extrapolation from static to dynamic studies remains de
facto speculative. Therefore, there is a real necessity to estimate
the MFCV during dynamic activities which compose a main part
of common activities (walking, running, cycling or jumping). The
most commonly applied methods for estimating MFCV are based
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on the assumption of signal stationarity and constant delay within
the processing interval, which is usually in the range 250 ms–1 s
[6]. This assumption is valid for static contractions of moderate
force but not during dynamic tasks or contractions consisting in
rapid changes in the force expressed [7]. Indeed, in dynamic con-
ditions, the EMG  signal is highly non-stationary and the time delay
between recording sites may  vary rapidly over time due to recruit-
ment and/or derecruitment of motor units with different MFCVs.
In order to properly analyze the MFCV evolutions during these
tasks, it is necessary to develop processing techniques that are
adapted to non-stationary conditions. In the non-stationary case,
the MFCV estimation is a time-varying delay estimation problem.
Only few previous studies addressed the problem of estimating
time delays from surface EMG  signals recorded during dynamic
tasks. Farina et al. [8] adapted a maximum likelihood estimator to
short analysis intervals for its use in dynamic contractions, however
the resulting approach does not provide an instantaneous delay
estimation. Non-stationarity implies time-varying statistics of the
data. Consequently, the analysis methods should provide local
estimates. Time-frequency representations (TFR) and adaptive fil-
tering techniques are among those approaches which are suited
for non-stationary signals analyses. For example, time-varying
delay estimators have been developed for turbulent flow analysis
based on the wavelet cross-power spectrum [9]. Adaptive filter-
ing techniques for time-varying delay estimation have also been
theoretically developed and investigated in terms of convergence

http://dx.doi.org/10.1016/j.bspc.2015.06.008
1746-8094/© 2015 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.bspc.2015.06.008
http://www.sciencedirect.com/science/journal/17468094
http://www.elsevier.com/locate/bspc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bspc.2015.06.008&domain=pdf
mailto:Philippe.Ravier@univ-orleans.fr
mailto:dario.farina@bccn.uni-goettingen.de
mailto:Olivier.Buttelli@univ-orleans.fr
dx.doi.org/10.1016/j.bspc.2015.06.008


P. Ravier et al. / Biomedical Signal Processing and Control 22 (2015) 126–134 127

rates and accuracy [10,11]. In this paper, we address the problem of
estimating the time-varying delay between two  EMG  signals with
the purpose of measuring MFCV in non-static conditions. For that,
we propose to develop a set of delay estimation methods based
on TFRs that are the most original part of this study. These meth-
ods are theoretically analyzed and modified to be adjusted to the
EMG  signal characteristics. In order to evaluate the quality of the
methods proposed, an alternative method based on an adaptive fil-
tering procedure already used for time-varying delay measure [12]
is presented and tested. The different approaches are compared
through Monte–Carlo simulations in order to classify them and to
determine if their performance statistics are sufficient for practical
applications. Moreover, we confront these methods to experimen-
tal data collected in dynamic exercise conditions in order to test the
ability of the methods to track the MFCV in the range of physiolog-
ical acceptable values. The study presents for the first time a set of
approaches for instantaneous delay estimation from EMG  signals.

2. Methods

2.1. Problem definition

We  adopt a surface EMG  model that allows the generation of
signals with a well defined time-varying delay. The EMG  signal
is the sum of motor unit action potentials and can be considered
as a Gaussian process when a sufficient number of contributions
are present [13]. The power spectral density of this signal can be
modeled by an analytical parameterized shape [14]. Moreover, the
signal is contaminated by instrumentation and recording noise
sources, which are uncorrelated to the EMG. Thus, the recorded
signal can be expressed as an EMG  component with Gaussian dis-
tribution and with a pre-defined spectral shape, summed to an
uncorrelated white noise component.

In this study, we will consider a simple two-channels model:{
x1(t) = s(t) + w1(t) 0 ≤ t ≤ T

x2(t) = s(t − �(t)) + w2(t) 0 ≤ t ≤ T
(1)

where �(t) is the time-varying delay between the first and the
second channel. The w1(t) and w2(t) are white noises which are
independent between each other and with respect to the signal
s(t). T is the observation duration.

The following derivations will consider continuous variables for
time t and frequency f. For the final computer application, the vari-
ables will be respectively digitized in variables n and k.

2.2. Time-frequency representations (TFR)

Among the TFRs, we will focus on the bilinear (also called
quadratic) transforms. These transformations allow the definition
of cross-transforms between two signal sources. Among the TFR,
the Cohen’s class gathers the set of energetical TFR that are invariant
by translation in time and frequency [15]. Regarding the stochastic
nature of the data, we define Px1x2 (t, f ) the sliding cross power spec-
tral density (SxPSD) between the channel x1(t) and the next channel
x2(t) as the averaging of the windowed interspectrum Sx1x2 (t, f ) as:

Px1x2 (t, f ) = E
{
Sx1x2 (t, f )

}
(2)

or

Px1x2 (t, f ) = E
{
Xx1 (t, f )X∗

x2
(t, f )

}
(3)

where Xxk (t, f ) =
∫ +∞

−∞ xk(�)h(� − t)e−j2�f�d� is the Fourier trans-
form of the signal xk(t) windowed by the function h(t) and E is the
mathematical expectation. When x1(t) = x2(t), this equation defines

the sliding power spectral density (SPSD). According to the model
of Eq. (1), we  obtain the following decomposition:

Px1x2 (t, f ) = Pss̃(t, f ) + Psw2 (t, f ) + Pw1 s̃(t, f ) + Pw1w2 (t, f ) (4)

where s̃(t) = s(t − �(t)). Since the noise components w1(t) and w2(t)
are centered, independent from s(t) and from each other, the last
three terms in Eq. (4) are zero. The remaining expression is thus:

Px1x2 (t, f ) = E
{
Xs(t, f )X∗

s̃ (t, f )
}

(5)

We show in the Appendix A that the phase component of the
SxPSD approximatively expresses as arg

[
Px1x2 (t, f )

]
≈ 2�f�(t). In

this way, the time-varying delay �(t) can therefore be estimated
by fitting at each instant t a linear curve of the SxPSD phase along
the frequency axis. For practical reasons, the coherence function
between x1(t) and x2(t) is preferred instead of SxPSD. Indeed, the
coherence function normalizes the SxPSD so that the estimation is
independent of the signals power:

cohx1x2 (t, f ) = Px1x2 (t, f )√
Px1x1 (t, f )

√
Px2x2 (t, f )

(6)

This expression can be evaluated by considering the estimations
Px1x2 (t, f ), Px1x1 (t, f ) and Px2x2 (t, f ). This leads to the method called
interspectrum and autospectrum averaging described in the follow-
ing. Alternatively, assuming that the magnitudes are deterministic,
the coherence is reduced to the averaging of the phase exponen-
tial. This leads to the second estimation method, so called in the
following coherency averaging.

Interspectrum and autospectrum averaging.  The first method for
the evaluation of Eq. (6) is based on the mathematical expectation
estimations of each term in the following expression:

cohFx1x2 (t, f ) = Et{Sx1x2 (t, f )}√
Et{Sx1x1 (t, f )}

√
Et{Sx2x2 (t, f )}

(7)

The Et symbol stands for the mathematical expectation over time
that is realized with the Welch averaging method. The SxPSD and
SPSDs are estimated by averaging the windowed interspectrum
Sx1x2 (t, f ) and windowed autospectra Sx1x1 (t, f ) and Sx2x2 (t, f ).

In the digital domain, this leads to:

cohFx1x2 (n, k) =

∑l/2

i=−l/2
S(W)
x1x2

(n − iL, k)√∑l/2

i=−l/2
S(W)
x1x1

(n − iL, k)

√∑l/2

i=−l/2
S(W)
x2x2

(n − iL, k)

(8)

where S(W)
x1x2

(n, k) is the digital instantaneous interspectrum
between x1 and x2 evaluated around time n on W-width window.
Similarly, S(W)

x1x1
(n, k) and S(W)

x2x2
(n, k) stand for the digital instanta-

neous spectra of x1 and x2, respectively. The value L is the shift
parameter between each slice of the Welch periodogram.

Coherency averaging.  The second method consists in applying
the expectation operator on instantaneous phase exponentials as
follows:

coh�x1x2 (t, f ) = Et {ej�x1x2 (t,f )} (9)

where the notation �x1x2 (t, f ) corresponds to the angle of the win-
dowed complex interspectrum function Sx1x2 (t, f ). The Et symbol is
realized in the digital domain by a local averaging on 2d + 1 points
around each instant n using the formula:

coh�x1x2 (t, f ) =
i=d∑
i=−d

Sx1x2 (n − i, k)
|Sx1x2 (n − i, k)| (10)

A similar approach has been previously proposed for the phase
synchrony detection from EEG signals [16].

For each coherence estimation method (cohFx1x2 (t, f ) and
coh�x1x2 (t, f )), the phase component is derived. The time-varying
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