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a  b  s  t  r  a  c t

Modeling  arterial  pressure  waveforms  holds  the  potential  for  identifying  physiological  changes.  There  is
a clinical  need  for  a simple  waveform  analysis  method  with  a  high  accuracy  in reproducing  the  original
waveforms.  The  aim  of  this  study  was to determine  the accuracy  of  modeling  carotid  and  radial  pulses
using  Gaussian  functions,  making  no  physiological  assumptions.  Carotid  and  radial  pulses  were recorded
from 20  normal  volunteers.  Ten  consecutive  beats  from  each  volunteer  were  analyzed  to determine
beat-to-beat  variability.  Each  pulse  was  decomposed  using  seven  combinations  of up to three  Gaussian
functions.  The  first  function  was  always  positive,  but  the  second  or third  could  be  either  positive  or
negative.  Three  positive  Gaussian  functions  reproduced  the  original  waveforms  best  with  a  mean  absolute
error (MAE)  of 1.2%  and  1.3%  for the  carotid  and  radial  pulses  respectively,  and  a  maximum  residual  error
of  only  4.1%  for both.  This  model  had  significantly  smaller  errors  than  any  of  the  other  six  (all  P  < 0.001).
Four  positive  Gaussian  functions  were  then  used  to test  the  stability  of  this  model.  An  insignificant  change
of  the  mean  MAE  (1.2%  for both  carotid  and radial  pulses)  was  obtained,  showing  that  the  stability  has
been reached  with three  positive  Gaussian  functions.  The  variability  of MAE calculated  as  the  standard
deviation  (SD)  over  the  10 beats was  small  at  0.2%  for  both  pulses  confirming  the  repeatability  of using
three  positive  Gaussian  functions.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Developments in arterial hemodynamics have indicated that
arterial pressure waveform contains more information than is visu-
ally available from peripheral measured sites (wrist, ear, finger,
or toe) [1–3]. Due to the complicated arterial topology, arterial
pressure waveforms vary between different measured sites. How-
ever, all sites contain information about the general function of the
cardiovascular system. This includes indices describing left ven-
tricular systolic function [4], arterial stiffness [5], dynamics of the
autonomic nervous system and heart–vasculature interaction [6].
Therefore, contour analysis of the arterial pressure waveform could
be an important tool to explore and assess changes in cardiovascu-
lar system function.

Many researchers have used various waveform analysis tech-
niques to identify specific features of the arterial pressure
waveform. The most common are by derivative methods, which
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use the first [7], second [8] or third derivatives [9] of the arterial
pressure waveform, or by wave intensity analysis [10,11], which
analyzes vascular hemodynamics in terms of traveling energy
waves. These techniques are simple and can be used in real-time
analysis. However, none of these techniques analyzed the features
of the complete arterial pressure waveform.

Researchers have also modeled the complete arterial pres-
sure pulse using the Windkessel model from which compliance
of the artery can be derived [12,13], or used distributed models
of the systemic arterial tree to reproduce pressure waveforms at
various locations [14–16], or used waveform fitting techniques,
which decompose the arterial pressure waveform into several inde-
pendent sub-waveforms. Published waveform fitting approaches
include Rubins’ method for analyzing simultaneously measured
ear and finger blood volume pulse signals using four Gauss-
ian functions [2], and Huotari’s method for analyzing finger and
toe photoplethysmographic (PPG) pulses using five logarithmic
normal functions [17,18]. Both studies have demonstrated that
the Gaussian function parameters were highly related to cardiac
hemodynamic parameters, including the augmentation index, the
reflection index, arterial elasticity and vascular aging. In terms
of the effectiveness of modeling, Rubins reported that the resid-
ual error between the measured pulse and the fitted function did
not exceed 10%. Huotari’s study provided only some examples

1746-8094/$ – see front matter ©  2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.bspc.2013.01.003

dx.doi.org/10.1016/j.bspc.2013.01.003
http://www.sciencedirect.com/science/journal/17468094
http://www.elsevier.com/locate/bspc
mailto:bestlcy@sdu.edu.cn
dx.doi.org/10.1016/j.bspc.2013.01.003


450 C. Liu et al. / Biomedical Signal Processing and Control 8 (2013) 449– 454

Table  1
Clinical characteristics of the volunteers participating in the study.

Characteristic Mean ± SD

Age (year) 51 ± 11
Height (cm) 171 ± 9
Weight (kg) 69 ± 8
Body mass index (kg/m2) 23 ± 3
Heart rate (beats/min) 71 ± 8
Brachial SBP (mmHg) 118 ± 12
Brachial DBP (mmHg) 71 ± 10
Brachial MAP  (mmHg) 87 ± 9
Brachial PP (mmHg) 47 ± 11

Data are expressed as mean ± standard deviation (SD). SBP, systolic blood pressure;
DBP, diastolic blood pressure; MAP, mean arterial pressure; PP, pulse pressure.

with an average maximum residual error of 4%. However, none
of those studies attempted to specifically evaluate the accuracy of
model fitting. Furthermore, when component separation methods
are used for contour analysis of the arterial pressure waveform,
it is important to determine the best combination of fitting func-
tions.

The aim of this study was to investigate the optimum combi-
nation of Gaussian functions that make up the arterial pressure
waveform without any assumption about incident and reflection
waves or any other physiological factor. Gaussian functions were
used in this study because ventricular pressure induced by car-
diac output has been shown to contain some Gaussian features [2].
We tested this modeling approach for both carotid artery pressure
waveforms (CAPW) and radial artery pressure waveforms (RAPW)
using between one and three Gaussian functions with different
polarities.

2. Methods

2.1. Data acquisition

Twenty normal volunteers were enrolled in this study at Qilu
Hospital of Shandong University (8 female and 12 male, mean age
51 years, range 32–73 years). The volunteers had not participated in
any other ‘clinical trial’ within the previous three months. The basic
clinical characteristics including age, height and weight were mea-
sured by an experienced operator. Manual auscultatory systolic and
diastolic blood pressures (SBP and DBP) were also recorded from
the right upper arm at the beginning of the signal recording. The
mean arterial pressure (MAP) and pulse pressure (PP) were then
calculated using the classic formula: MAP  = DBP + (SBP − DBP)/3
and PP = SBP − DBP. The overall clinical information is summarized
in Table 1.

All measurements were undertaken in a quiet, temperature-
controlled measurement room (25 ± 3 ◦C). Before recordings
started, the volunteer lay supine on a measurement bed for a
10 min  rest period to allow cardiovascular stabilization. Electro-
cardiogram (ECG) electrode clamps were attached to the right
wrist, left and right ankles to acquire a standard limb lead II
ECG. Piezoresistive sensors were attached to the neck and the left
wrist to acquire simultaneous CAPW and RAPW signals respec-
tively.

For each volunteer, the ECG, CAPW and RAPW signals were
recorded for more than 1 min  and converted into digital sig-
nals simultaneously using a 16-bit data acquisition card (National
Instruments, USA) at a sample rate of 1000 Hz. Subsequently, off-
line analysis was performed using a custom designed computer
program developed from MATLAB (Version R2009a, MathWorks
Inc., USA). First, the slow varying components (0–0.05 Hz) were
removed from the ECG, CAPW and RAPW signals. Second, the R-
wave peaks of the ECG were detected using the Wavelet Transform
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Fig. 1. An example of the simultaneous ECG, CAPW and RAPW signals. The detected
R-wave peaks were denoted as “�”, and the starting points of CAPW and RAPW
signals were denoted as “�” and “�” respectively.

Modulus Maxima method [19]. Ectopic beats were identified and
excluded using our previously developed method [20]. After the
location of R-wave peaks, the corresponding pulse feet (start of
pulse) were found. Sola et al.’s method was used to detect the pulse
feet [21], which was  based on the parametric modeling of the rising
edge of a pulse waveform. The pulse signals were then segmented
between the starting points of two consecutive pulses. The first
10 successive pulse segments without ectopic beats were used for
subsequent analysis. Using 10 pulses ensured the variation over a
respiratory period was  included. Fig. 1 shows an example of the
three signals with the features identified. Because the recorded
pulse waveforms varied in amplitude and pulse period (cardiac
cycle length) between different subjects. Each pulse segment was
then normalized in period and amplitude to allow comparison of
the effectiveness of modeling between different combinations of
Gaussian function, with the period to 1000 sample points, and the
amplitude to unity between baseline and peak.

2.2. Waveform fitting with Gaussian functions

Each normalized pulse was  decomposed into several inde-
pendent Gaussian functions. The number of Gaussian functions
employed ranged from one to three, since it is generally
accepted that there can be up to three components to the
arterial pressure waveform. These three Gaussian functions are
denoted as f1(n), f2(n) and f3(n). Each Gaussian function fk(n)
(k = 1,2,3) had 1000 points (n = 1,2, . . .,  1000) and was determined
by three independent non-dimensional parameters: waveform
area Ak, halfwidth Wk and the center position Ck (within
the range of 0–1000). The Gaussian function was  defined as
follows:

fk(n) = Ak

Wk ·
√

�/2
exp

(
−2(n − Ck)2

W2
k

)
,

k = 1, 2, 3, n = 1, 2, . . . 1000 (1)

The first Gaussian function f1(n) denotes the forward wave and
f2(n) and f3(n) may  denote reflection waves or other waveform
features. The influence of different polarities for the second and
third functions was  tested. This resulted in seven sets of Gauss-
ian functions (a single Gaussian function or the addition of two
or three Gaussian functions). The number of functions for each
pulse were 1, 2, 2, 3, 3, 3, 3, described as ‘+’, ‘+−’,  ‘++’, ‘+−−’, ‘++−’,
‘+−+’ and ‘+++’. The symbol ‘+’ denotes a positive Gaussian function
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