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a  b  s  t  r  a  c  t

Fluoroscopic  images  exhibit  severe  signal-dependent  quantum  noise,  due  to  the  reduced  X-ray  dose
involved  in  image  formation,  that  is  generally  modelled  as  Poisson-distributed.  However,  image  gray-
level transformations,  commonly  applied  by  fluoroscopic  device  to enhance  contrast,  modify  the noise
statistics and  the  relationship  between  image  noise  variance  and  expected  pixel  intensity.  Image  denois-
ing is  essential  to  improve  quality  of  fluoroscopic  images  and  their  clinical  information  content.  Simple
average  filters  are  commonly  employed  in  real-time  processing,  but they  tend  to blur  edges  and  details.  An
extensive  comparison  of  advanced  denoising  algorithms  specifically  designed  for  both  signal-dependent
noise  (AAS,  BM3Dc,  HHM,  TLS)  and  independent  additive  noise  (AV,  BM3D,  K-SVD)  was  presented.  Sim-
ulated test  images  degraded  by various  levels  of  Poisson  quantum  noise  and  real  clinical  fluoroscopic
images  were  considered.  Typical  gray-level  transformations  (e.g.  white  compression)  were  also  applied
in order  to  evaluate  their  effect  on  the  denoising  algorithms.  Performances  of  the  algorithms  were
evaluated  in  terms  of  peak-signal-to-noise  ratio  (PSNR),  signal-to-noise  ratio  (SNR),  mean  square  error
(MSE), structural  similarity  index  (SSIM)  and  computational  time.  On  average,  the  filters  designed  for
signal-dependent  noise  provided  better  image  restorations  than  those  assuming  additive  white  Gaus-
sian  noise  (AWGN).  Collaborative  denoising  strategy  was  found  to  be the  most  effective  in  denoising  of
both  simulated  and  real  data,  also  in the  presence  of  image  gray-level  transformations.  White  compres-
sion,  by  inherently  reducing  the  greater  noise  variance  of  brighter  pixels,  appeared  to  support  denoising
algorithms  in  performing  more  effectively.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Fluoroscopy provides continuous-time X-ray images of a body
part and is widely adopted as support in surgery procedures and
diagnoses for the real-time displaying of surgical instrument (e.g.
in orthopedic surgery), catheters or wire-guides (e.g. in angiogra-
phy, angioplasty, pacemaker), structures highlighted by contrast
agent (e.g. blood vessels, gastro intestinal tracts) and body mov-
ing parts (joint or implanted prosthesis). Since patients need to be
exposed to radiation over a long period, very low X-ray doses are
applied. As a result, fluoroscopic images result strongly corrupted
by noise.

Noise reduction as well as contrast enhancement can be sig-
nificantly improved by considering the specific nature of the
fluoroscopic noise. Because of the limited X-ray photons involved,
fluoroscopic images are dominated by signal-dependent Poisson
noise, also known as “quantum noise”. In general, at low exposure
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levels, pixel intensity (G) of a fluoroscopic image at the position
r = [x,y]T can be modelled as Poisson-distributed:

PG(G(r)) = [�(r)]˛G(r)e−�(r)

˛G(r)!
(1)

where � � 1 is the expected photon count at that position in an
interval of time (i.e. the reciprocal of the fluoroscope frame rate)
and cd = 1/˛  is a positive constant representing the detector gain
[1–6]. According to the Poisson distribution model, variance of
image noise is linearly dependent on the expected pixel intensity
and results strongly signal-dependent [1–6]:

var[H(r)] = cdE[G(r)] (2)

It is also worth to consider that over- and under-exposure of digital
imaging sensors generate “clipping” effects at the extremes of the
pixel intensity data range [6].

Gamma-correction is usually applied by fluoroscopic devices
to improve contrast between tissues and to compensate for the
X-ray exponential attenuation by determining an expansion of con-
trast for darker pixels and a compression for those brighter (i.e.
white compression) [2,5–7].  This fundamentally changes the noise
characteristics. After applying a gamma-correction transformation
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the pixel intensity of the fluoroscopic image can be expressed as
[6,7]:

G� (r) = c� G(r)� (3)

where c� is a positive constant and � is typically ranged between 0.3
and 0.45 for commercial X-ray fluoroscopic equipment. By varying
the �-value it is possible to set an appropriate level of white com-
pression. However, this also modifies the statistics of Poisson noise.
As a consequence, noise level results a monotonically decreasing
power function of mean pixel intensity of the gamma-corrected
data [6]:

var[G� (r)] ∼= �2 · c1/�
� · cd · E[G� (r)]2−(1/�). (4)

The literature is rich in denoising methods that assume additive
white Gaussian noise (i.e. AWGN), while less attention has been
paid to the design of denoising algorithms for Poisson noise. In addi-
tion, no observations about the effect of gray-level transformations
applied to quantum-limited images on the performance of com-
mon  denoising methods have been reported yet. In low-dose X-ray
images noise reduction is generally achieved by means of simple
linear averaging filters that can operate both in time and space. Lin-
ear filters usually assume noise to be additive, white and Gaussian
(AWGN) and consider only a global estimation of noise content (i.e.
noise is supposed not to be signal-dependent). Although these fil-
ters act very fast (allowing real-time applications), they exhibit the
undesirable effect of degrading edges and tiny structures. This is
not suitable for several applications, such as image segmentation,
object recognition or image registration, that require an appro-
priate balance between noise reduction and signal preservation
[8–11]. For instance, detection of boundaries is based on derivative
operators which are particularly sensitive to noise and edge blur-
ring [11]. The continue advance of computers allows to apply more
complex digital processing methods and denoising strategies to
overcome the limitations of linear filters. Edge-preserving adaptive
filters [11,12],  adaptive variational denoising [13], non local-means
filtering [14,15],  image denoising based on wavelet-domain hid-
den Markov models [16], sparse and redundant representations
over learned dictionaries [17,18], total least square approaches [19]
or partial differential equation techniques [20] are some example.
Most of these algorithms assume noise to be signal-dependent and
are based on the estimation of the local noise content; this gen-
erally permits to obtain a better trade-off between the amount
of noise reduction and edge-preservation. In particular, by con-
sidering the specific nature of the fluoroscopic noise it is possible
to more accurately set the denoising algorithm parameters to the
noise characteristics.

The aim of this study is to compare the effectiveness of
some popular denoising algorithms in restoring fluoroscopic
images, i.e. in presence of Poisson noise and gray-level trans-
formations. Denoising algorithms specifically designed for both
signal-dependent noise [12,15,16,19] and independent additive
noise (AWGN) [13,14,17,20] were compared by using known data
corrupted by simulated Poisson noise and real fluoroscopic data.

2. Denoising algorithms

- An adaptive averaging spatial filter (AAS) specifically designed for
signal-dependent noise was considered (similar to [11,12]). The
filter performs the average of the only neighbouring pixels that
differ less than a selected threshold from the gray level of the
central pixel of the filter mask. The threshold is set to two  times
the estimated standard deviation of the noise associated with the
local gray level. This intrinsically permits to preserve the edges
with a gradient of gray greater than the local noise intensity.

-  Denoising algorithms based on gradient dependent regulariz-
ers, such as nonlinear diffusion processes and total variation
denoising, modify images towards piecewise constant functions.
Although edge sharpness and location is well preserved, impor-
tant image features (such as textures or specific details) are often
compromised. The adaptive variational denoising (AV) is a mech-
anism that better preserves fine scale features in such denoising
processes [13]. A basic pyramidal structure-texture decompo-
sition of images is employed. A first level of this pyramid is
used to isolate noise and relevant texture components in order
to compute spatially varying constraints based on local vari-
ance measures. A variational formulation with a spatially varying
fidelity term controls the extent of denoising over image regions.
In other words, regions of the residual part with local variance
higher than that of the noise are treated as textured regions where
denoising is inhibited.

- The BM3D performs an image collaborative denoising strategy
based on an enhanced sparse representation in transform domain
[14]. The enhancement of the sparsity is achieved by grouping
similar image regions (e.g. blocks) into 3-D data arrays which
are called “groups.” Collaborative filtering is realized using the
three successive steps: 3-D transformation of 2-D image blocks
into a group, shrinkage of the transform spectrum and inverse
3-D transformation. The result is a 3-D estimate that consists
of the jointly filtered grouped image blocks. By attenuating the
noise, the collaborative filtering reveals even the finest details
shared by grouped blocks and, at the same time, it preserves the
essential unique features of each individual block. The filtered
blocks are then returned to their original positions. Because these
blocks are overlapping, for each pixel, we obtain many different
estimations that need to be combined. Aggregation is a partic-
ular averaging procedure which is exploited to take advantage
of this redundancy. A significant improvement is obtained by a
specially developed collaborative Wiener filtering. Although the
BM3D algorithm is designed for AWGN, it has been also widely
used for non-Gaussian noise.

- A denoising algorithm for signal-dependent “clipped” noisy
observations (BM3Dc) was performed [15]. The approach
involves a BM3D filter designed for AWGN and derives specific
homomorphic transformations to stabilize the variance of the
clipped observations (i.e. to adapt the estimated noise variance to
the actual signal-dependent noise model), to compensate the bias
due to the clipped distribution in the variance-stabilized domain
and to compensate the estimation bias between the denoised
clipped variables and the non-clipped true variables.

- Wavelet-domain denoising is generally based on the assump-
tion that the wavelet coefficients are statistically independent or
jointly Gaussian. However, in several cases (e.g. image compres-
sion) non-Gaussian models for individual wavelet coefficients
are required. Moreover, statistical dependencies between coef-
ficients should be characterized in order to derive optimal signal
processing algorithms. A framework for statistical signal process-
ing based on wavelet-domain hidden Markov models (HMM)  that
concisely models the statistical dependencies and non-Gaussian
statistics encountered in real signals was assumed [16]. The
method involves an efficient expectation maximization algorithm
for fitting the HMM  to observational signal data. This approach
can be very useful for reconstructing image affected by non-
Gaussian noise.

-  The K-SVD is an image denoising algorithm for AWGN  based on
sparse and redundant representations over trained dictionaries
[17]. Using the K-SVD algorithm, a dictionary that describes the
image content effectively can be obtained. Two training options
are considered: using the corrupted image itself or training on a
corpus of high-quality image database. Since the K-SVD is limited
in handling small image patches, its deployment is extended to
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