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a  b  s  t  r  a  c  t

In  this  paper,  we  present  a semi-supervised  approach  for  liver  segmentation  from  computed  tomogra-
phy  (CT)  scans,  which  is based  on  the  graph  cut  model  integrated  with  domain  knowledge.  Firstly,  some
hard  constraints  are  obtained  according  to  the  knowledge  of  liver  characteristic  appearance  and  anatom-
ical  location.  Secondly,  the  energy  function  is  constructed  via  knowledge  based  similarity  measure.  A
path-based  spatial  connectivity  measure  is  applied  for robust  regional  properties.  Finally,  the image  is
interpreted  as  a graph,  afterwards  the segmentation  problem  is  casted  as  an  optimal  cut on  it, which
can  be  computed  through  the  existing  max-flow  algorithm.  The  model  is evaluated  on  MICCAI 2007  liver
segmentation  challenge  datasets  and  some  other  CT volumes  from  the  hospital.  The  experimental  results
show  its  effectiveness  and  efficiency.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

As a noninvasive and painless medical test, abdominal CT scan
has been widely used in hospitals of China for liver cancer diagno-
sis [1].  The first and fundamental step in computer aided diagnosis
is the liver segmentation, which is of benefit in many aspects for
further treatment, such as three-dimensional visualization, quan-
titative analysis, and surgery planning.

Nevertheless, the topic is still an arduous task for the fol-
lowing reasons. Firstly, the CT images are often very noisy that
inevitably exist ambiguous boundaries between the liver and its
adjacent organs, including abdominal wall, right kidney, heart,
stomach and gallbladder. Sometimes, it becomes even worse that
the boundaries disappeared because of the poor imaging quality.
Secondly, the liver presents significant inter-patient and intra-
patient anatomical variations, which make it difficult to generate
a uniform benchmark. Thirdly, the liver has diversity problem on
intensity distributions, i.e., the bright vessel, the regular healthy
tissue and the dim tumor. Consequently, the intensity based algo-
rithms always lack in accurate segmentation results. Finally, the
slice-by-slice segmentation approach is time consuming, and the
results on each slice are independent of each other. Therefore,
a more efficient and accurate volume segmentation method is
needed.

Given the difficulty of liver segmentation, many models have
been proposed with varying degrees of success [2].  However, some
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critical problems remain unsolved. Most existing shape model
based methods focus on the representation of the liver shape [3–5],
yet they fall short of accurately segmenting the liver because of
the large shape variability among different patients. Moreover, the
results are highly dependent on initialization. Although in [6] a hier-
archical shape was represented with a really fast processing speed,
the model suffered from seriously blurred boundaries between
liver and vicinity organs. For coping with shape variation problems
in segmentation, a sparse information model was exploited in [7],
but little information has been provided on the model efficiency.
Moreover, the results relied too much on the data volumes used to
build the sparse model.

In recent years, the most popular used models are in terms of
energy minimization [8],  among which the level set based method
and graph based method are overwhelming adopted. In the context
of liver segmentation, the level set based method always gener-
ates local minima of the energy function, be sensitive to contour
initialization and has large iterative computation burden [9,10].
Especially in dealing with tumors located near the liver surface, the
segmentation result often tends to eliminate them from the target
since the local optimization. Meanwhile, the vessels also need to be
additionally segmented and remerged into the final result. Combin-
ing the two  popular methods, a graph cuts based active contours
approach was  presented in [11], which used graph cuts to itera-
tively deform the contour. It failed to jump over local minima in
spite of leading a more global and smooth result. Meanwhile, the
initial contour should be strictly set around the target exterior bor-
der, otherwise yielded a terrible segmentation result. The graph
cut models demonstrate a great potential with the advantage of
global optima and practical efficiency [12]. When it comes to liver
segmentation [13,14], sometimes the standard graph cut model
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is incapable under the circumstance of seriously blurred bound-
aries and similar intensities between the liver and its neighbor
organs. What is more, the model is sensible to the energy func-
tion parameters which are only from interactive information or
empirical estimation. To address the robustness issue, we extend
the graph cut model with domain knowledge information in the
form of initialization and similarity constraints. The commonly
used knowledge in description of liver CT images involves appear-
ance feature, anatomical location and spatial connectivity [15]. Our
main contribution is devising a knowledge based energy function
that is minimized under a given set of region and boundary condi-
tions.

The paper is organized as follows. A problem formulation for
liver CT image segmentation is provided in Section 2. The proposed
domain knowledge based graph-cut model for liver CT segmenta-
tion is elaborated in Section 3. In Section 4, the experimental results
together with performance evaluation of the proposed model are
presented and discussed. Section 5 concludes the paper.

2. Problem formulation

Let P = {1, 2,.  . .,  M}  be the set of image voxels, L = {0, 1} is the set
of labels corresponding to the image background and the object to
be segmented. The goal of image segmentation is to find an optimal
labeling configuration f: P → L for each voxel in the image, where f
is both piecewise smooth and consistent with the observed data. In
this framework, the problem can be naturally formulated in terms
of minimizing the following energy [16].

E(f ) = Edata(f ) + Esmooth(f ) =
∑
p ∈ P

Dp(fp) +
∑

(p,q) ∈ N

Sp,q(fp, fq). (1)

where data term Dp is a data penalty function indicates how well
the label fp fits the voxel p, smooth term Sp,q is an interaction
potential which encourages spatial coherence by penalizing dis-
continuities between neighboring voxels p and q, N = {Ni| ∀ i ∈ P}
is the 6-connected neighborhood system in 3D space. The energy
combines boundary regularization with regional properties, which
provides a global optimal and robust solution for image segmenta-
tion.

Generally speaking, the statistics of a voxel in a medical image
are related to the statistics of the voxels in a small local neigh-
borhood around it [17], which means the label assigned to a voxel
depends only on the labels assigned to its neighbors. This condition
satisfies the Markovian property.

Pr(fi|{fj : j ∈ P − {i}}) = Pr(fi|{fj : j ∈ Ni}), ∀i ∈ P. (2)

Assuming F = {F1, F2,. . .,  FM} as a field of random variables, each
variable Fi is associated with a voxel i ∈ P and takes a value from L,
any possible assignment of labels f = {f1, f2,. . .,  fM} is essentially a
realization of the field. The segmentation problem is formulated as
maximum a posterior estimation of a Markov random field f that
requires minimization of a posterior energy conditioned over the
observed data X [16].

E(f |X) = � ·
∑
p ∈ P

− log Pr(xp|fp) + (1 − �) ·
∑
p ∈ P

∑
q ∈ Np

K(p, q) · ıfp /= fq .(3)

where � > 0 controls the balance between the two  energy terms,
Pr(xp|fp) is a likelihood function of data feature xp associated with
label fp, Np is the 6-connected neighbor set of p in 3D space, K(p,
q) is a positive penalty function, and ı is a two-valued indicator
function with 1 only if fp /= fq, otherwise ı = 0.

3. Model description

3.1. Domain knowledge based initialization

In most cases, the CT images do not have sufficiently distinct
regional properties that more necessary hard constraints should
be incorporated into the global optimization framework [18]. In
particular, this kind of hard constraints may  come directly from the
following domain knowledge, which focuses on the liver location,
size and intensity distribution:

• The liver is located in the right upper quadrant of the abdominal
cavity, resting just below the diaphragm. It lies to the right of
the stomach and overlies the gallbladder, and surrounded by the
right kidney, heart, rib and spine. It is connected to two  large
blood vessels, i.e., the hepatic artery and the portal vein.

• The liver is both the largest internal organ and gland in the human
body, and sure the largest organ in the abdominal cavity.

• For liver cancer cases, the liver region consists of tumor tissues,
healthy tissues and blood vessels, with intensity distribution
approximately over the range of 20–90 HU (Hounsfield Units),
90–150 HU, and 150–250 HU. While the intensity of thoracic
spine with ribs is about 300–600 HU.

In this paper, the hard constraints are either automatically
or manually selected as seeds. Assuming that O and B denote
the set of object and background seeds, they should satisfy:
O ∩ B = � & ∀ p ∈ O : fp = 1 & ∀ p ∈ B : fp = 0. It means the object seeds
are labeled with 1 and the background seeds have the label of 0,
meanwhile the two  seed sets should not intersected at all. Auto-
matically set seeds are initialized according to the third domain
knowledge: all the voxels with intensities less than 0 HU or more
than 300 HU are marked as part of B. On the other hand, manu-
ally controlled seeds are obtained by user interactive tools, such
as bush and lasso strokes. For a more distinct representation, the
object seeds in O are chosen respectively around the healthy tis-
sues, blood vessels and tumor tissues, while the rest of background
seeds in B are marked around the seriously ambiguous boundaries
between liver and its neighbor organs.

In addition, since the resolution of CT scanners keeps increasing
rapidly, it is not rare that a volume data has more than hundreds
of millions voxels, while only about one-third of them belong to
the region of interest (ROI). Therefore, the computing space can be
restricted in the light of the first two  domain knowledge. Further
discussion with experimental results will be given in Section 4.1.

3.2. Energy formulation with domain knowledge

3.2.1. Construction of smooth term
The term Sp,q is interpreted as a penalty for a discontinuity

between neighbor voxels p and q, which is typically used to guar-
antee that the resulting segmentation has smooth boundaries.

In 3D space, q is only searching along the nearest 6-connected
neighborhood of p in order to improve efficiency. The more similar p
and q are, the larger cost of the penalty is. The penalty will decrease
close to zero when the two  neighbor voxels are very different. The
similarity measure can be based on local intensity gradient, Lapla-
cian zero-crossing, gradient direction, geometric and so on [18].
For most cases in liver segmentation, a Gaussian model based on
intensities serves as a good choice for the smooth term, which can
be expressed as follows:

K(p, q) = e−(Ip−Iq)2/2�2
(q ∈ Np(6)). (4)
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