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a  b  s  t  r  a  c  t

Future  generations  of  upper  limb  prosthesis  will  have  dexterous  hand  with  individual  fingers  and  will
be controlled  directly  by neural  signals.  Neurons  from  the  primary  motor  (M1)  cortex  code  for  finger
movements  and  provide  the  source  for neural  control  of  dexterous  prosthesis.  Each  neuron’s  activation
can  be  quantified  by  the  change  in  firing  rate  before  and after  finger  movement,  and  the  quantified
value  is  then  represented  by  the  neural  activity  over  each  trial  for  the intended  movement.  Since  this
neural  activity  varies  with  the  intended  movement,  we  define  the  relative  importance  of  each  neuron
independent  of  specific  intended  movements.  The  relative  importance  of  each  neuron  is determined  by
the inter-movement  variance  of  the  neural  activities  for respective  intended  movements.  Neurons  are
ranked by  the  relative  importance  and  then  a  subpopulation  of  rank-ordered  neurons  is  selected  for
the neural  decoding.  The  use  of  the  proposed  neuron  selection  method  in  individual  finger  movements
improved  decoding  accuracy  by  21.5%  in  the  case  of  decoding  with  only  5  neurons  and  by 9.2%  in  the  case
of decoding  with  only  10 neurons.  With  only  15  highly  ranked  neurons,  a  decoding  accuracy  of 99.5%  was
achieved. The  performance  improvement  is  still  maintained  when  combined  movements  of two  fingers
were  included  though  the  decoding  accuracy  fell  to  95.7%.  Since  the  proposed  neuron  selection  method
can  achieve  the  targeting  accuracy  of decoding  algorithms  with  less  number  of  input  neurons,  it  can  be
significant  for  developing  brain–machine  interfaces  for direct  neural  control  of  hand  prostheses.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A brain–machine interface (BMI) is a methodology which
enables a brain to communicate with an external device bypassing
normal neuromuscular systems. Currently, a BMI  has drawn much
interest as an appropriate alternative for restoring both motor con-
trol [1–4] and sensory feedback to amputees so that they can again
perceive heat, cold, pressure, and the position of a limb in space [1].
BMI  systems collect neural activities from various cortical areas,
such as the primary motor, premotor and posterior parietal cortex,
and interpret the encoded motor-intent into control commands or
kinematic parameters [2–4]. Up to now, many relevant studies have
been exploited such as a closed-loop control of a computer cursor
and target tracking, reaching and grasping task of a hand [5–7].

Presently dexterous, multi fingered prosthetic limbs are under
development. Neural control of dexterous hands will require
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signals from a population of neurons coding for the hand and fin-
ger movements. Hence, an important problem in neural prosthesis
control is to select, and preferably rank in terms of their relative
importance, neurons coding for individual finger movements.
Solution to this problem requires a trade-offs between achieving
high decoding accuracy and low computational complexity. Since
not all recorded neurons contribute equally to the all movements,
since some neurons are related weakly or not at all to the specific
movements, the use of as many neurons as possible does not
guarantee high decoding accuracy and may even degrade the
performance of the decoding algorithm. In addition, the increase
in the number of input neurons puts a computational burden on
finding an optimal solution especially when the goal is to imple-
ment such decoding algorithms in an experimental hardware [8,9].
Therefore, developing a metric for evaluating the contribution
of neurons selected for BMI  tasks is at the core of designing
an efficient real-time BMI. Researchers have developed some
techniques to evaluate the relative importance and select the best
neurons coding for the information [9–12]. Sensitivity analysis
and single neuron correlation analysis through a vector linear
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model were proposed to quantitatively rate the importance of
neurons in neural to motor mapping [9,10].  These analyses depend
on the decoding model and thus they are not easy to interpret
from neurophysiologic points of view [10]. In another approach,
a neuron’s individual removal error was defined and then used
for representing its importance in the population vector neural
decoding method [11]. Recently, information theoretical analysis
based on an instantaneous tuning model was applied to extract
the important neuron subset for neural decoding on BMI  [12].
However, these quantification methods of neurons’ importance
have been developed for predicting intended reach and cursor
control and are not yet targeted toward achieving dexterous hand
and finger control. Thus, a very active area of research currently is
to develop neural control of dexterous hand prosthesis, i.e. provide
realistic control strategies for actuation and control of individual
and combined finger movements [13–23].  However, methods of
neuron selection for complex finger movements, have not been
well developed, and as such is the subject of this paper.

We present a new simple metric for quantifying the relative
contribution of a neuron toward finger movements. Based on the
change in firing rate before and after the starting moment of each
instructed finger movement, we define a random variable for the
change in firing rate. Then, finding the means of each random vari-
able over six trials for each movement, we finally compute the
variance of the means over whole movements for each neuron. A
larger variance of neural activations over each finger movement
means that the corresponding neuron is activated distinguish-
ably for each finger movement, and it can contribute to accurate
decoding performance of all finger movements. Thus, we  use these
variances as a new metric for ordering neurons. With the ordered
neurons we performed maximum-likelihood (ML) neural decoding
[20] and then compared the performance with that of randomly
selected neurons. Our objective is to demonstrate an improvement
in decoding accuracy.

The remainder of the paper is organized as follows: In Section
2, neuron selection based on neural activity is developed and ML
neural decoding with the selected neurons is introduced. Section
3 shows the performance improvements with the selected neu-
rons by comparing ML  decoding performances with and without
selected neurons. We  analyze the decoding performance when both
individual and combined finger movements are included. Section
4 presents the conclusion.

2. Neural decoding based on neuron selection of M1
neurons

2.1. Neuronal recordings from motor (M1) cortex

Three male rhesus (Macaca mulatta) monkeys—K, G, C—were
trained to perform visually cued movements of individual fingers
and the wrist movements. In addition, the monkey K was trained
to perform combined finger movements involving two  digits
in order to test the decoding accuracy of more dexterous and
complex movements. The monkeys were prepared for single-unit
recording by surgically implanting both a head-holding device
and a rectangular Lucite recording chamber that permitted access
to the area encompassing M1  contralateral to the trained hand
[18]. These recording were obtained using self-made, glass-coated,
Pt–Ir, microelectrodes. Recording tips were etched to be parabolic
in shape and approximately 10 �m wide 20 �m back from the tip
[21]. There were 12 distinct individual movements: flexion (f) and
extension (e) of each of the fingers (1 = thumb,. . .,  5 = little), the
wrist (w) of the right hand, and six combined two-finger move-
ments: f12, f23, f45, e12, e23, e45. The monkeys placed their right hand
in a pistol-grip manipulandum; this grip separated each finger into

a different slot. The pistol grip manipulandum was also mounted
on an axis allowing flexion and extension of the wrist. The monkeys
were instructed to flex or extend a single digit until a microswitch
was  closed. The duration of each trial was  approximately 2 s,
and for analysis all trials were aligned such that switch closure
occurred at 1 s [18]. Throughout these investigations, the monkeys
were cared for according to the “Guiding Principles for Research
Involving Animals and Human Beings” accepted by the American
Physiological Society [13]. A detailed description of the methods
used to train the monkey and the actual experimental protocols
can be found in [12,13]. Single-unit activities were recorded
from 115 task-related neurons in the M1  cortex of the monkey.
Independent trials of each type of movements were recorded
six times.

2.2. Ordering of neurons by relative importance

To define the neural activity, we  need a random variable repre-
senting firing rate of a neuron for each finger movement. Let rn(m)
be a random variable of firing rate of a neuron n for a movement
type of m.  Specifically, rn(0m) denotes the baseline activity of the
neuron n before the movement of m.  Then, we can define the neural
activity considering only movement by introducing the following
random variable [20]:

xn(m)  = rn(m)  − rn(0m). (1)

Since the random variable of xn(m)  represents the change in fir-
ing rate before and after the starting moment of instructed finger
movement, it can be used as a metric of neuron’s activation
for respective movements. Considering the randomness of neural
activity, we can determine the neuron’s sensitivity to a particular
finger movement m by obtaining the ensemble average of xn(m),
i.e., E[xn(m)]. The estimate of E[xn(m)] is usually computed by aver-
aging the recorded neural activation, xn(m,  k), for possible training
sets, that is

�n(m)  = 1
P

P∑
p=1

xn(m, p) (2)

where P is the number of independent training sets. As P increases,
the reliability of the metric can be also improved. However, the
increase of P means that more training data are needed and thus
there is a trade-off between the data size and the metric reliability.
Letting M be the total number of tested movement types, then the
neuron n has M �n(m)s and each �n(m)  represents the estimate
of the neuron’s activity corresponding to the movement of m. As
a result, the value of �n(m)  can be considered a straightforward
metric for the absolute degree of neural activation ascertaining
how much the neuron n contributes to a particular movement of
m independent of other movements. This metric, however, can-
not be directly applied for selecting the input neurons because the
goal of neural decoding is to find the unknown movement from
recorded spike signals. For any metric to be available for ascer-
taining the importance of a neuron when selecting an appropriate
input neuron set for neural decoding, it should reflect the relative
difference of activations among all the tested movements, not the
absolute magnitude of activation for a particular movement. To
achieve this goal, we define a relative importance of a neuron n with
the inter-movement variance of neural activities as the following
equation:

Vn = 1
M

M∑
m=1

(�n(m)  − �̄n)2 (3)
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