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a b s t r a c t

We have discussed many statistical tests and tools in this series of commentaries, and while we have
mentioned the underlying assumptions of the tests, we have not explored them in detail. We stop to look at
some of the assumptions of the t-test and linear regression, justify and explain them, mention what can go
wrong when the assumptions are not met, and suggest some solutions in this case.
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While we have mentioned them in passing, and have delved into
them slightly when considering non-parametric statistical tests (1),
the assumptions underlying our statistical tests have most often been
background players in our discussions. In this commentary, we will

change focus, bringing assumptions to the foreground, and look
closely at those of some of the more commonly used statistical tools.
Wewill think about why the assumptions are important, why they are
required, and what they mean. We will also discuss what happens
when assumptions are not met, and mention some options for
addressing these violations.

Conspicuous by its absence in this article is a review of tools to test
assumptions; while this is clearly important, we prefer to leave this
aspect of the discussion for later examination, as part of a broader,
overarching discussion of regression models and model selection to
be presented in a series of 5 articles. We will present here, then, an
overview of the meanings and technicalities of the assumptions of
tests. In a second commentary, we will discuss several notions of
goodness of fit, and fidelity of models, given that our required model
assumptions are met. In that commentary we will more thoroughly
introduce residuals of various sorts, as part of metrics of fidelity. We
will also use residuals in our diagnostic tools, to be introduced in a
third commentary. Next in the series we will discuss predictive
models, and the use of cross-validation for the verification of these
models. This discussion profits from our earlier introduction of re-
siduals. The exploration will be brought, in some sense, full circle,
with a fifth commentary on how to make model selection decisions.

The Right Tool for the Job

Why worry about assumptions at all? Statistics is difficult
enough as it is, as we have to think about which test to apply, how
to interpret the results, and how to use the results to inform the
clinical story we are trying to tell. If we already have more than 20
commentaries on use and interpretation of statistics in the In-
vestigators’ Corner series, why muddy the waters further with
more technicality? Because statistics, like any tool, is agnostic to its
use and users. One could, but shouldn’t, use one’s kitchen oven to
make pottery. One could, but shouldn’t, use the screw driver from
the tool shed in performing a TAR. In either case, it is not the tool
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that is to blame, but the user; in both cases the tool has been
extended past where it should go, and the results obtained will be
suboptimal, and perhaps disastrous. So too with statistics. Any time
there are two groups of subjects, we can, but perhaps shouldn’t
always, compare variables between the groups using a Student’s
t-test. Any time we are looking at union rates vs. time since sur-
gery, we can, but perhaps shouldn’t always, examine trends using a
linear regression. In this commentary we explore the limits of
some of our tools, we see how far they can and should stretch, and
we look at what happens when they break. We are looking to see
what suitable inputs are needed to obtain meaningful outputs:
what should be allowed in the oven if we want to bake beautiful
breads. Rather than getting into technical weeds, or exploring
esoteric tests, we will focus on several of the more commonly used
statistical tests: t-test, ANOVA, and linear regression.

Assumptions of the Student’s t-test and the ANOVA

While it is the most basic of the tests we will examine, many of
the assumptions of the Student’s t-test have echoes or are revisited
in the other, more complex, tests which we use. The t-test is used to
compare the mean values of a continuous variable in two groups.
We see in this description of the test the origin of the requirements
that the data has to meet in order for the test to produce mean-
ingful results: we are examining continuous variables.

Normality

As such, since we usually prefer to deal with normally distributed
continuous variables, we require it of our data; the data in each group
should be normally distributed. This is actually a relatively subtle
requirement, and not quite true as written. In unravelling the t-test,
and looking at its mechanics, we learn that the statistic it computes,
the t-statistic,

mðAÞ � mðBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2A
nA

þ s2B
nB

q ;

is distributed following a t-distribution. (We recall that mðAÞ and mðBÞ
are the mean values in groups A and B, respectively; s2A and s2B are the
within group variances in the two groups; and nA and nB are the
numbers of subjects in each of the two groups.) In order that
the above quantity follow the t-distribution, it must be the case that
the data in each group satisfies a requirement closely related and very
similar to the requirement that the data in each group be normally
distributed.1 We settle, then, on this last, the requirement that the
data be normally distributed within each group separately.

Homoscedasticity

We notice in the formula above that the means in the two groups
are compared, but the variances are combined, giving us a pooled
estimate of the variance of the overall population. In fact, if we think
about the null hypothesis of the t-test, it is that the two groups being
compared are actually from the same population: that men and
women are the same in terms of mean height, that time to union is
identical with the two fixation types being compared. Given that this
is the null hypothesis, our second assumption is completely natural:

homoscedasticity, or that the variances in the two groups are the
same. We are looking at two groups with the same variance and
asking whether the means are the same. This assumption also makes
sense from a mathematical point of view, in that if one group’s
variance is very large, and the other’s small, one group will domi-
nate. The problem is exacerbated if one group is much larger than
the other. Of course, given that we are looking only at samples of our
two groups, and there is thus sampling noise, we do not expect that
the variances be exactly the same in the two groups, but we do
require them to be relatively close.

Independence

While not explicit in the formulation of the t-test, the third
assumption comes about from the explicit statement of the question
which the test is hoping to answer: given two, distinct, groups, are the
means of the continuous variable of interest the same? We note that
the two groups are distinct. In other words, no individual appears in
both groups, and the groups are independent, with no relationships
between individuals in the two groups, except those that may arise by
mere chance. This precludes studies where we look at individuals
taking two distinct treatments; pre/post studies; studies of siblings or
other closely related pairs of people; and any other similar designs.

The assumptions of the ANOVA are the same as those for the t-test,
but of course involve three or more groups, rather than two. And,
while the essence of the assumptions remains the same in consid-
ering two-way ANOVA, their statement becomes somewhat more
complex.

Violations

We have listed three requirements: within group normality,
equality of variance, and independence of observations. How seri-
ously should each be taken, and why do they matter? For the first
assumption, we can see the importance with a very simple example.
We consider the mean incomes of people in two neighboring
counties. If one county happens to contain a high powered CEO or
two, the mean incomes in that county may well look very large,
relative to those in the neighboring county. Remove those CEOs,
however, and the incomes look essentially the same. The skew
imparted by those data points makes the incomes in the one county
non-normally distributed, and may confuse our inference about
relative wealth, depending on the question we wish to answer.
Normality matters. We have also mentioned that the formulas, the
mathematics behind the test, rely on normality of data. But, having
said this, the t-test is actually relatively robust to deviations from
normality, and it is only data with great skew, or especially small data
sets, that we worry about. In most cases, with moderate or large data
sets, absent serious deviations from normality, we are not too con-
cerned. The second assumption, homoscedasticity, while natural, is
also somewhat odd from a scientific point of view: why would we
expect that men’s and women’s heights have the same variance?
What if we truly want to know whether the means are the same, and
do not wish to be concerned with equality of variance? Again, the test
is relatively robust to violations, but even better, statisticians have
developed a variant of the t-test, the Welch-Satterthwaite t-test, that
removes this assumption. While this new test is slightly less powerful
than the most basic t-test, the strength of not having to concern
oneself with the annoying homoscedasticity assumption is worth the
loss of powerdmost statistical packages will default to, or at least
provide, the Welch-Satterthwaite results. We are left with the third
assumption, that the two groups be independent. While the previous
two assumptions pertain to the content of the data, this assumption is
about study design. We have discussed related issues in our earlier

1 For those of a technical bent, the specific requirement is that the sampling dis-
tribution of the mean within each group is normally distributed. It is the fact that, due
to the Central Limit Theorem, this holds for large enough sample sizes, irrespective of
underlying distribution of data, that allows us to ignore the assumption of within
group normality of the data, when groups are large.
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