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Covariates in regression analyses allow us to understand how independent variables of interest impact our
dependent outcome variable. Often, we consider fixed effects covariates (e.g., gender or diabetes status) for
which we examine subjects at each value of the covariate. We examine both men and women and, within each
gender, examine both diabetic and nondiabetic patients. Occasionally, however, we consider random effects
covariates for which we do not examine subjects at every value. For example, we examine patients from only a
sample of hospitals and, within each hospital, examine both diabetic and nondiabetic patients. The random
sampling of hospitals is in contrast to the complete coverage of all genders. In this column I explore the
differences in meaning and analysis when thinking about fixed and random effects variables.
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In my most recent Investigators’ Corner (1), I looked at
interaction terms in regression analysis. Interaction terms encom-
pass a set of tools that allow us to look more finely at the covariates
in our multivariate regression models. We can say, broadly
speaking, that interactions allow us to look at “more” levels of our
variables. For example, rather than just looking separately at male
versus female and diabetes versus nondiabetes we are able, in
some respects, to look at all combinations of values of the 2 vari-
ables. We concluded the column by mentioning that the variables
we had thus far considered in these examples had distinct values
that were of particular interest to us (e.g., men vs. women), and
that we were examining all such possible values. In contradistinc-
tion, I noted that in certain situations we might have variables in
our analyses that had actual values not of particular interest. As an
example, I mentioned comparing salaries between men and
women, from a random selection of cities in the United States. In
this setting, the difference between Chicago, Illinois, and Galveston,
Texas, is not of substantive interest, first because that difference is
not the one that we are trying to understand and second because
we don’t have data on all citiesdjust the ones in our random
sample. Thus, we cannot make any general statements about all
possible individual cities.

In this Investigators’ Corner I look into including these random
effects in our models. Why would we even want to include such a
variable in our analyses? If we don’t think we can or want to say
anything about the values of the variable, what could it possibly add of
utility to our analysis? Even if we did wish to include such a variable,
what information could we glean from it, and how? In order to
answer these questions, we need to step back and reconsider the
mathematics behind our basic tools, specifically Student’s t test and
the analysis of variance (ANOVA), as well as to rethink why we do
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multivariate analysis, and what it adds to our understanding of
relationships.

The Student’s t Test and ANOVA

Let us revisit one of the first tests we learn about in biostatistics,
the Student’s t test, but I will try to make its connection to its big
brother, ANOVA, a little clearer than normal. The Student’s t test is
designed to compare the means of a continuous variable in 2 groups
and tell us if those means are different. Although the test examines
means, the variance of the variable being studied, within each group,
sneaks into the picture in a way that is of importance to us. Explicitly,
but suppressing some technical details, the formula for the t test is

mðAÞ � mðBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2A
nA

þ s2B
nB

q ;

where m(A) and m(B) are the mean values in groups A and B, respec-
tively; s2A and s2B are thewithin group variances in the 2 groups; and nA
and nB are the numbers of subjects in each of the 2 groups. (This is the
most basic form of the t test, where we suppress concerns regarding
large differences between our 2 groups in terms of within group
variances or sample sizes. Although those more complicated forms of
the t test have accordingly more complicated formulae, the essence of
those formulae is the same as that of the formula presented here.)

What does this formula mean? We see the difference between
means, which we would expect. And we divide that difference, or
variation, by some sort of estimate of the variance within the groups;
in fact, it looks almost like aweighted average of the variances in the 2
groups, where we weight by the size of the groups. We have then the
variation (or variance!) between groups, divided by the variance
within groups. If this ratio, the t value, is large, the corresponding
p value for the t test is small, and we have observed a significant
difference in means.

A heuristic picture will aid in understanding what is happening
here. In Fig. 1A we see 2 groups in which the difference (variance)
between the mean values (illustrated by the red vertical line) is large
and, in particular, is large relative to the within group variance
(illustrated by the blue vertical line). Our intuition, translated into
mathematics in the formula shown earlier, tells us that we should not
hesitate to call this difference between means significant. By contrast,
in Fig. 1B the variance between groups is small relative to the variance
within groups, and we would not call the difference in means sig-
nificant. The variance within groups is so large that we have trouble
deciding whether the difference between groups is real or is just
secondary to the large variation within groups. Less within group
variability allows us to better understand between group variability.

Now that we have done the heavy lifting of understanding the
technicalities of the t test, the logic of the ANOVA reveals itself to us
easily. Indeed, the ANOVA is really just an extension of the t test:
rather than comparing the between group variance to the within
group variance of 2 groups, we do the same exercise with 3 groups.
Given that there are 3 ormore groups, rather than 2, we cannot simply
look at a difference of means in the numerator. The ANOVA handles
this by making explicit what we had implied in talking about the t
test: the numerator is now a variance of (or between) group means,
and the denominator remains an estimate of within group variances.
Essentially, this method is another comparison of means, using
variances.

But the story does not end here. Indeed, simple linear regression is
just another application of the same idea! Fig. 2 shows a scatterplot. Is
the trend we observe statistically significant? We again look at vari-
ances: is the variance over the whole data set (the variance between

the predicted means of the y values at the various x values) large
compared to the variance of y values within each x value? As before,
these 2 variances are represented with red and blue lines, respec-
tively, and again we compute their ratio. A large ratio yields a sig-
nificant test, a small ratio a non-significant result. In fact, the
statistical test (F test) employed in testing significance here is the
same as that used in testing significance of our ANOVA ratios.

Multivariate Regression

When I first discussedmultivariate regression (2), I introduced it as
a tool with which we could ascertain the independent impacts of each
variable:

� Is age associated with time to bone union independently of body
mass index (BMI)?

� Is BMI associated with time to bone union independently of age?

In other words, the multivariate regression tells us how BMI im-
pacts time to union at any given fixed age, rather than telling us how
BMI impacts time to union, in the population overall. These are, at
least intuitively, 2 different notions of average:

� The former is an average of the effects of BMI at each age.
� The latter is an average of the effect of BMI in the whole
population.

It is in this sense that we view multivariate regression as a way
to “control” for the impact of one variablewhile examining the impact
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Fig. 1. (A) An example of 2 groups where the difference in means is significant.
(B) An example of 2 groups where the difference in means is not significant. In both
figures the red vertical line represents between group variance, and the blue vertical line
represents within group variance.

Fig. 2. A scatterplot, with red vertical line showing deviation of predicted y-values from
the mean y-values, and blue vertical line showing deviation at each x-value of the y-
values from the predicted y-value.
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