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a b s t r a c t

The problem of determining an oral dose, or schedule of oral doses, that gives rise to an arbitrary area-
under-curve or to points on the time-series for a variable of interest in a drug kinetics model is considered.
These two measures are considered as surrogates for the particular drug response to the dose. The
approach taken is to formulate the problem as a fixed point one to which a version of the contraction
mapping theorem can be applied. The results, illustrated for a model for the anti-cancer agent topotecan,
demonstrate the applicability of the approach.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

One of the benefits of a drug kinetics model is that it permits
the prediction of the effect of a given dose on the kinetics of the
drug, such as its absorption, distribution, metabolism and elimina-
tion. Typically one, or some combination, of the model variables
corresponds to pharmacological activity and this might be linked
to the drug dynamics, in terms of the effect of the drug. Perhaps
the simplest kinetic model is a one-compartment (variable) model
describing the plasma concentration of drug with linear elimi-
nation, which gives rise to a decaying exponential time course
following a bolus injection of drug. Properties of the time course,
such as half-life or area-under-curve, might be indicators or pre-
dictors of the efficacy of the drug dose.

For example, Evans et al. [1] propose a model for the in vitro
uptake kinetics of the anti-cancer agent topotecan (TPT). TPT,
a water-soluble semi-synthetic derivative of camptothecin [2], is
a reversible poison of the nuclear enzyme topoisomerase I [3],
which is an enzyme used to alleviate torsional stresses during DNA
replication [4]. The drug exists in two forms, a pharmacologically
active parent lactone form (TPT-L), and an inactive hydroxy acid
form (TPT-H). The model proposed in [1] describes the kinetics
of the two forms of TPT from input into the medium to deliv-
ery to the DNA target, which is represented by a variable in the
model corresponding to TPT-L bound to nuclear DNA. The area
under the concentration–time curve (AUC) for this variable is
used as a surrogate for the ‘hit-on-target’, that is, the effective-
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ness of the drug dose. More recently, Chappell et al. [5] coupled
the kinetic model with a cell cycle dynamics model in which the
concentration–time curve was used directly to consider effective-
ness of the drug dose. In this case it was the full time series profile of
TPT-L bound to DNA that was important in determining the effect
of the drug.

In this paper the problem of determining an optimal oral dose,
or oral dosing schedule, for a drug kinetics model is considered.
Optimality is regarded with respect to either hit-on-target as rep-
resented by the AUC for a particular times-series, or to achieving
pre-defined points on a given time-series. The approach taken
is to reformulate the problem in such a way as to make the
solution the fixed point of a suitable contraction mapping. The
approach taken is based on that taken by Evans and Pritchard [6]
for containing the outbreak of rabies in a previously naive popula-
tion.

The earliest use of fixed point methods in a control context
was by Hermes [7] for finite-dimensional systems. Davison and
Kunze [8] describe the application of fixed point methods to
finite-dimensional time-varying systems, and this approach has
been extended to infinite-dimensional systems by Magnusson and
Pritchard [9]. Carmichael and Quinn [10] provide an early review of
the use of fixed point methods in nonlinear control and observation.

The following version of the contraction mapping theorem from
[11] is used in this paper:

Theorem 1. Suppose that ϕ : W → W is a mapping between Banach
spaces that satisfies

||ϕx − ϕy|| ≤ k||x − y||, 0 ≤ k < 1
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(k a constant), for x, y ∈ D, a subset of W. If both the ball

S =
{

w ∈ W : ||w − w1|| ≤ k

1 − k
||w1 − w0||

}

and w0 lie in D, then the iterative process wi+1 = ϕwi converges to
a unique fixed-point in D.

2. Arbitrary area-under-curve

Consider the problem of choosing a drug dose d for a general
drug kinetic model of the following form:

ż(t) = f (z(t)), z(0) = z0 + Bd (1)

y(t) = Cz(t) (2)

such that a particular area-under-curve (AUC) value is obtained for
the desired time course y(t). Thus the problem is to choose d such
that yT =

∫ T

0
y(t) dt = yd, for some target value, yd.

Suppose that an initial guess is made for the dose, d = d̂, which
gives rise to the following AUC value:

ŷT =
∫ T

0

Cẑ(t) dt

where ẑ(t) is the solution of the initial value problem

˙̂z(t) = f (ẑ(t)), ẑ(0) = z0 + Bd̂.

Since this is unlikely to yield the desired value consider pertur-
bations from this solution; that is, set x(t) = z(t) − ẑ(t) and u = d − d̂
in Eq. (1) to yield the following:

ẋ(t) = f (x(t) + ẑ(t)) − f (ẑ(t)) = A(t)x(t) + N(t, x(t)), x(0) = Bu

where A(t) is the Jacobian matrix of f (with respect to z) evaluated
at ẑ(t). With respect to this perturbed system the output of interest
becomes:

yT = C

∫ T

0

(
x(t) + ẑ(t)

)
dt = C

∫ T

0

x(t) dt + ŷT .

Neglecting (for now) the nonlinearity, the problem corresponds
to choosing u such that:

C

∫ T

0

�(s, 0)Bu ds = mT u = yd − ŷT where mT = C

∫ T

0

�(s, 0)B ds

and �(·, ·) is the state-transition matrix for the time-varying linear
system. Since mT is a number then the unique solution (for the
linear system) is given by:

u∗ = (yd − ŷT )
mT

.

Now considering the full nonlinear system this suggests choos-
ing u such that:

C

∫ T

0

x(t) dt = C

∫ T

0

[
�(t, 0)Bu +

∫ t

0

�(t, s)N(s, x(s))ds

]
dt

= yd − ŷT ,

giving

mT u = yd − ŷT − C

∫ T

0

∫ t

0

�(t, s)N(s, x(s)) ds dt

and so the choice for the dose is given by

u∗ = 1
mT

[
yd − ŷT − C

∫ T

0

∫ t

0

�(t, s)N(s, x(s)) ds dt

]
. (3)

This, however, gives an implicit relationship between u∗ and the
solution x (which requires u∗). To overcome this problem a fixed-
point is sought of the following operator:

(�x)(t) =
∫ t

0

�(t, s)N(s, x(s)) ds + m−1
T �(t, 0)B

[
yd − ŷT − C

∫ T

0

∫ t

0

�(t, s)N(s, x(s)) ds dt

]
. (4)

If x is a fixed point of this operator, � , then the AUC for the dose
d̂ + u∗ is then given by:

yT = C

∫ T

0

x(t) dt + ŷT = C

∫ T

0
(�x) (t) dt + ŷT = yd.

Thus the desired AUC is achieved for the dose d̂ + u∗, provided
there exists a fixed point of the operator � defined in (4).

Theorem 2. Suppose that the following are satisfied:

1. N(·, x(·)) ∈ Ls(0, T;Rn) whenever x(·) ∈ Lr(0, T;Rn) where r, s ≥ 1
are real numbers;

2. N : [0, T] × Rn → R
n is Lipschitz on the ball B(ā) of radius ā about

the origin in Lr(0, T;Rn):

||N(·, z1(·)) − N(·, z2(·))||s ≤ h(||z1||, ||z2||)||z1 − z2||r

for zi ∈ B(ā) and h : R+ × R+ → R
+ is continuous, symmetric and

h(0, 0) = 0;
3. Let a ≤ ā be such that

||�||
[

T ||�|| ||B|| ||C||
|mT | + 1

]
T̃K = K̃ < 1

where K = sup0≤w,v≤ah(w, v) and T̃ = T (1+(1/r)−(1/s)).

If the AUC corresponding to the initial dose, ŷT , is close to the target
value in the sense that

||yd − ŷT || ≤
a|mT |

(
1 − K̃

)
||�||T1/r ||B|| (5)

then the operator � in Eq. (4) has a unique fixed point.

Proof. To see that � is a contraction on the ball B(a) note that:

||�x1 − �x2||r ≤ T̃ ||�||K ||x1 − x2||r + TT̃ |mT |−1||�||2||B|| ||C||K ||x1 − x2||r

= ||�||
[

T ||�|| ||B|| ||C||
|mT | + 1

]
T̃K ||x1 − x2||r .

Let x0 = 0, x1 = �x0 = m−1
T �(·, 0)B

[
yd − ŷT

]
and S be the ball

S =
{

x ∈ Lr(0, T;Rn) : ||x − x1|| ≤ K̃

1 − K̃
||x1||r

}
.

S is contained within the ball B(a) provided[
1 + K̃

1 − K̃

]
||m−1

T �(·, 0)B
[
yd − ŷT

]
||r ≤ a

which is guaranteed by Eq. (5). Applying Theorem 1 proves the
required result. �

A natural extension to the problem considered in this section is
to consider multiple doses. However, since it is possible to achieve
any desired AUC for a single dose it seems natural to consider the
problem of achieving different AUC values on different time inter-
vals. This problem reduces to repeated application of the single dose
problem above.
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