
Web Semantics: Science, Services and Agents on the World Wide Web 33 (2015) 50–70

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: www.elsevier.com/locate/websem

Temporalizing rewritable query languages over knowledge bases
Stefan Borgwardt, Marcel Lippmann ∗, Veronika Thost
Institute of Theoretical Computer Science, Technische Universität Dresden, 01062 Dresden, Germany

a r t i c l e i n f o

Article history:
Received 30 September 2013
Received in revised form
18 November 2014
Accepted 27 November 2014
Available online 8 December 2014

Keywords:
Ontology-based data access
Linear temporal logic
Query answering
Rewritability
Description logic

a b s t r a c t

Ontology-baseddata access (OBDA) generalizes query answering in relational databases. It allows to query
a database by using the language of an ontology, abstracting from the actual relations of the database.
OBDA can sometimes be realized by compiling the information of the ontology into the query and the
database. The resulting query is then answered using classical database techniques.

In this paper, we consider a temporal version of OBDA. We propose a generic temporal query lan-
guage that combines linear temporal logic with queries over ontologies. This language is well-suited for
expressing temporal properties of dynamic systems and is useful in context-aware applications that need
to detect specific situations. We show that, if atemporal queries are rewritable in the sense described
above, then the corresponding temporal queries are also rewritable such that we can answer them over
a temporal database. We present three approaches to answering the resulting queries.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Context-aware applications try to detect specific situations
within a changing environment (e.g., a computer system or air
traffic observed by radar) to be able to react accordingly. To gain
information, the environment is observed by sensors (for a com-
puter system, data about its resources is gathered by the operat-
ing system), and the results of sensing are stored in a database. A
context-aware application then detects specific predefined situa-
tions based on this data (e.g., a high system load) and reacts ac-
cordingly (e.g., by increasing the CPU frequency).

In a simple setting, such an application can be realized by us-
ing standard database techniques: the sensor information is stored
in a database, and the situations to be recognized are specified as
database queries [1]. However, we cannot assume that the sensors
provide a complete description of the current state of the environ-
ment. Thus, the closed world assumption employed by database
systems (i.e., facts not present in the database are assumed to be
false) is not appropriate since theremay be facts of which the truth
is not known. For example, a sensor for specific information might
not be available for a moment or not even exist.

In addition, though a complete specification of the environment
usually does not exist, some knowledge about its behavior is

∗ Corresponding author.
E-mail addresses: stefborg@tcs.inf.tu-dresden.de (S. Borgwardt),

lippmann@tcs.inf.tu-dresden.de (M. Lippmann), thost@tcs.inf.tu-dresden.de
(V. Thost).

often available. This background knowledge could be used to
formulate constraints on the behavior of the real environment.
These constraints help formulate queries to detect more complex
situations.

This information (i.e., the sensor data and the background
knowledge) is stored in so-called knowledge bases, which are some-
times called ontologies. A knowledge base consists of a fact base
and a theory, which store the data in a formally well-understood
way. The fact base contains simple facts (e.g., the concrete values
given by sensors), and is interpreted with the open world assump-
tion, i.e., facts not present are assumed to be unknown rather than
false. The theory contains the additional background knowledge
(e.g., general domain knowledge) stored in a symbolic represen-
tation. The situations to be detected are then specified in an ap-
propriate query language. The resulting queries are then evaluated
w.r.t. the information encoded in the knowledge base. This gen-
eral approach is often called ontology-based data access (OBDA)
[2,3].

However, since the environment is changing, it is often desir-
able to specify situations that take into account temporal behavior.
In this setting, we model the incoming information as a sequence
of fact bases, one for each moment in time in which the system
has been observed. To recognize situations, we propose to add a
temporal logical component to atemporal queries over knowledge
bases.We use the operators of the temporal logic LTL, which allows
to reason about a linear and discrete flow of time [4]. Usual tem-
poral operators include next (φ), which asserts that a property φ
is true at the next point in time, eventually (φ), which requires φ
to be satisfied at some point in the future, and always (�φ), which

http://dx.doi.org/10.1016/j.websem.2014.11.007
1570-8268/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.websem.2014.11.007
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2014.11.007&domain=pdf
mailto:stefborg@tcs.inf.tu-dresden.de
mailto:lippmann@tcs.inf.tu-dresden.de
mailto:thost@tcs.inf.tu-dresden.de
http://dx.doi.org/10.1016/j.websem.2014.11.007

S. Borgwardt et al. / Web Semantics: Science, Services and Agents on the World Wide Web 33 (2015) 50–70 51

forces φ to be true at all time points in the future. We also use the
corresponding past operators −, −, and �−.

Consider, for example, a distributed video platform providing
several services such as uploading, streaming, and transcoding
(i.e., the conversion of video formats). At any given time point, a
fact base for such a system could contain facts like the following,
which describe that there is a server s with an overutilized CPU c ,
which executes an uploading service (ULS) p1 and a transcoding
service (TCS) p2, both of which are active:

CPU(c), Overutilized(c), Server(s), hasCPU(s, c),
ULS(p1), executes(s, p1), Active(p1),
TCS(p2), executes(s, p2), Active(p2).

The background theory could contain an axiom such as
∀x.Server(x) ∧


∃y.hasCPU(x, y)∧ Overutilized(y)


→Overloaded(x),

which states that a server having an overutilized CPU is overloaded.
Given the above fact base, we can conclude that s is currently
overloaded.

Since transcoding is very resource-intensive, it is important to
transcode popular videos preemptively in phases of less utilization
instead of on demand in phases of high utilization. However, the
situation can clearly change after a preemptive transcoding service
has been started. For that reason, one may want to detect critical
situations inwhich a server of the platformhas become overloaded
while executing such a service.

The temporal query
TCS(x) ∧ Server(y) ∧ executes(y, x) ∧ ψ0 ∧


NLB(y)S ψt


with

ψt :=


Active(x) ∧ Overloaded(y) if t = 0
ψ0 ∧ ψt−1 if t ≥ 1

and t ≥ 0 therefore asks for a transcoding service x and a server y
that executes it, where x is active and y is overloaded. The second
part of the query requires that NLB(y) has been true for the whole
time since (S) the subquery ψt was true. In other words, we are
looking for a time point in the past that satisfies ψt such that all
time points since then satisfy NLB(y), which expresses that y has
not been affected by a load balancing operation in the meantime.
The subqueryψt again asks for x to be active and y to be overloaded,
and furthermore that there is a time point after the current one
() satisfyingψt−1. We are thus asking for a series of t+1 critical
time points (not necessarily immediately following each other).
We consider the temporal behavior of this example query in more
detail in Sections 5 and 6.

One might argue that, as we are looking at the time line from
the point of view of the current time point, and nothing is known
about the future, it is sufficient to have only past operators like S
or �−. We also show that in our setting it is indeed always possible
to construct an equivalent query using only past operators (see
Section 5.3). However, the resulting query is not very concise and
it is not easy to see the situation that is to be recognized. Indeed,
for propositional LTL eliminating the past operators from a formula
results in a blowup that is at least exponential and no constructions
of size less than triply exponential are known [5].

1.1. Related work

In this paper, we consider so-called rewritable query languages,
i.e., query languages forwhich evaluating a query over a knowledge
base can be reduced to answering a rewritten query (in a
different language) over a database induced by the knowledge
base. Such query languages, especially in the context of Description
Logics (DLs) [6], are covered extensively in the literature (see
Example 2.11).

Investigations of temporal query languages based on combina-
tions of query languages and temporal logics such as LTL [4] have
started only quite recently. Yet, a number of very expressive tem-
poral query languages have been proposed [7–10].

For rewritable query languages, most research focuses on light-
weight languages of the DL-Lite family [11]. However, instead of
temporalizing the query language and evaluating the queries over
a global knowledge base, also temporal knowledge bases are exam-
ined,which allow temporal operators to occur inside axioms. These
approaches are based on research about temporalized description
logics (see [12] for a survey). For example, in [13], various light-
weight DLs are extended by allowing the temporal operators to in-
terfere with the DL component. Following the ideas of [13], in [14]
a rewritable temporal query language over temporal knowledge
bases in DL-Lite is proposed.

There is also a lot of closely related work in the field of
temporal databases. In [15], for instance, the authors describe a
temporal extension of the SQL query language that can answer
temporal queries over a temporal database. In [16–18], an ap-
proach is described that reduces the amount of space needed to
evaluate temporal queries by keeping only the relevant data in the
database instead of keeping track of all the information from the
past.

1.2. Our contribution

In this paper, we consider temporal queries over knowledge
bases in a very general setting that allows us to extend many
existing atemporal query languages by temporal operators (cf. Sec-
tion 3). In Section 4, we show that the reasoning task of temporal
OBDA in this setting can be reduced to answering queries over tem-
poral databases. The main part of the paper is thus concerned with
what we call the temporal database monitoring problem, where a
fixed temporal query is continuously evaluated over a temporal se-
quence of databases.

We present three approaches to solving this problem. The first
one employs existing temporal database systems using a transla-
tion from our temporal query language into a specialized database
query language [15] (cf. Section 5.1). The second approach again
rewrites the query in order to obtain a query without future op-
erators, which then can be answered using an algorithm from [16]
(cf. Section 5.3). The advantage of this algorithm is that the time re-
quired to answer the temporal query at the current time point does
not depend on the total running time of the system; this is called
a bounded history encoding in [16]. In Section 6, we propose a new
algorithm that extends the one from [16] in that it also deals with
future operators directlywhile guaranteeing a bounded history en-
coding. We also discuss different advantages and drawbacks of the
three approaches.

Sometimes it is desired to state that certain facts do not change
over time, i.e., are rigid. In Section 7, we show how our proposed
algorithm can be extended to deal with a limited form of rigidity
in a specific class of queries.

This paper is an extension of [19], where we have consid-
ered only the special case of answering temporal queries over
DL-Litecore-ontologies. In contrast to [19], we also show in this pa-
per that our proposed algorithmpreserves the bounded history en-
coding of [16]. Additionally, this paper contains the full proofs of
our results. To improve readability, some of them are presented in
the Appendix.

2. Preliminaries

Asmentioned in the introduction,we consider temporal queries
over knowledge bases in a very general setting. This section

Download English Version:

https://daneshyari.com/en/article/557641

Download Persian Version:

https://daneshyari.com/article/557641

Daneshyari.com

https://daneshyari.com/en/article/557641
https://daneshyari.com/article/557641
https://daneshyari.com

