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1. Introduction

Mental fatigue is a common physiological phenomenon, and is
inevitable for office workers in general, which affects the
individual’s life quality on different aspects. It is usually
accompanied with a sense of weariness, reduced alertness, and
reduced mental performance, which would lead the accidents in
life, decrease productivity in workplace and harm the health.
When people become fatigued, they usually experience difficulties
for maintaining task performance at an adequate level [1]. In
industry, many incidents and accidents are related to mental
fatigue as the result of sustained performance [2]. It is important to
manage and cope with mental fatigue so that workers do not harm
their health. Therefore, the management of mental fatigue is
important from the viewpoint of occupational risk protection,
productivity, and occupational health.

To date, many methods have been proposed to estimate the
mental fatigue. A large number of previous studies use behavioral
indices or subjective measures such as reaction time, error ratio or
subjective scales. A recent tendency in ergonomic research is to
choose more objective measures to assess the mental fatigue state.
These approaches focus on measuring physiological changes of

people, such as the electrooculogram (EOG), respiratory signals,
heart beat rate, skin electric potential, and particularly, electroen-
cephalographic (EEG) activities as a means of detecting the mental
fatigue states [3,4]. Although numerous physiological indicators
are available to describe an individual’s mental fatigue state, the
EEG signals may be the most promising, predictive and reliable one
[5,6]. The EEG is widely regarded as the physiological ‘‘gold
standard’’ for the assessment of mental fatigue.

In present, many scholars have studied the mental fatigue
induced by one single task, such as driving task, hypoxia, etc. S.K.L.
Lal investigated the use of EEG as a fatigue countermeasure during
driver fatigue [7]. C. Papadelis et al. used the nonlinear
electroencephalography parameters, i.e. approximate entropy to
assess hypoxia-induced EEG alterations, and found these com-
plexity parameters can assess the different hypoxic levels reliably
and effectively [8]. B.T. Jap used EEG spectral components to study
the EEG activities change during a monotonous driving session [9].
C. Papadelis used the Shannon entropy, the Kullback–Leibler
entropy and the cross-approximate entropy to analyze the EEG
data from sleep-deprived subjects exposed to real field driving
conditions, and found these EEG parameters can assess effectively
the brain activity alterations that occur a few seconds before
sleeping/drowsiness events in driving [10,11]. However, mental
fatigue is a complex phenomenon and it is affected by many
factors. Thus, in order to study the sensitivity of nonlinear
complexity parameters to different types of mental fatigue, we
have first designed three different cognitive tasks to induce three
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A B S T R A C T

Two complexity parameters of EEG, i.e. approximate entropy (ApEn) and Kolmogorov complexity (Kc) are

utilized to characterize the complexity and irregularity of EEG data under the different mental fatigue

states. Then the kernel principal component analysis (KPCA) and Hidden Markov Model (HMM) are

combined to differentiate two mental fatigue states. The KPCA algorithm is employed to extract

nonlinear features from the complexity parameters of EEG and improve the generalization performance

of HMM. The investigation suggests that ApEn and Kc can effectively describe the dynamic complexity of

EEG, which is strongly correlated with mental fatigue. Both complexity parameters are significantly

decreased (P < 0.005) as the mental fatigue level increases. These complexity parameters may be used as

the indices of the mental fatigue level. Moreover, the joint KPCA–HMM method can effectively reduce

the dimensionality of the feature vectors, accelerate the classification speed and achieve higher

classification accuracy (84%) of mental fatigue. Hence KPCA–HMM could be a promising model for the

estimation of mental fatigue.
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different types of mental fatigue, and then used the nonlinear
complexity parameters to analyze different type of mental fatigue.

In this study, two complexity parameters, i.e. approximate
entropy (ApEn) and Kolmogorov complexity (Kc) are used to
quantify the complexity and irregularity of EEG data under two
mental fatigue states, i.e. one before performing a 2-h mental task,
and one after. For comparison, Tsallis entropy (TE) is also employed
to analyze the change of mental fatigue [16]. Then we propose a
novel scheme of training Hidden Markov Model (HMM) for
estimation of mental fatigue using the complexity parameters in
five frequency bands of EEG. Considering the high-dimensionality
and nonlinear nature of EEG data [12–15], the kernel principal
component analysis (KPCA) is adopted to extract nonlinear
features from the complexity parameters of EEG, and then to
train the HMM. Thus, KPCA and HMM are combined to
differentiate two mental fatigue states. Compared with previous
studies, the presented comprehensive methods would make the
mental fatigue estimation much more reliable and accurate since
many methods are combined.

2. Materials and methods

2.1. Subjects

Fifty male right-dominated graduate students, between 20 and
27 years old (M = 23.0 years, SD = 1.6), participated in this study.
Personal data (handedness, past medical history, medical family
history, etc.) were acquired with a standardized interview before
EEG recordings. All subjects were in good health. None of them
reported on any cardiovascular disease or neurological disorders in
the past or had taken any drugs known to affect the EEG. Subjects did
not work night shifts and had normal sleep time. All of them were
accustomed to use the computer mouse and agreed to join the study.

2.2. Experiment and data acquisition

The experimental tasks were three types of simple cognitive
tasks. The first type of task was a vigilance task. Three random
numbers displayed at the same time on the CRT screen and
changed once every second randomly. The subjects were asked to
click the right mouse button promptly, as three different odd
numbers, such as 1, 7, 9, appeared. Sixteen subjects participated in
this experiment. The second type of task was the addition and
subtraction arithmetic calculation of four one-digit numbers. They
were displayed on a computer monitor continuously until the
subject responded. The participants solved the problems firstly,
and then decided whether the result was less than, equal to, or
greater than the target sum provided. Sixteen subjects participated
in this experiment. The third type of task was a simple switch task.
A white square, subdivided into four subsquares, was displayed
continuously at the screen center. Stimulus images were presented
in turn, and the image was starting from the upper left subsquare
with clockwise fashion. The stimulus images were number from
zero to nine randomly. The color of the stimulus images was red or
blue randomly. Then the subjects should pushed the left or right
mouse button related to the image color, respectively, when the
stimulus image appeared in either of two upper subsquares, or
related to the odd or even number identity if the stimulus appeared
in either of two lower subsquares. Eighteen subjects participated in
this experiment. All subjects performed the cognitive task until
either they quitted from exhaustion or 2 h elapsed. The response
time and the number of error trials, if any, were recorded.

Subjects were required to abstain from alcohol and caffeine-
containing substances 24 h before the experiment. Subjects were
told the study was aimed at investigating the neural correlates of
cognitive control, they were unaware the study was about mental

fatigue. To avoid the influence of circadian fluctuations on subjects,
the experiments were scheduled to be at the same time session.
The experimental session started about 8:00. There is no clock or
watch in the laboratory. They had no knowledge about experi-
mental duration.

Subjects were seated in a dimly lit, sound-attenuated,
electrically shielded room. Before starting the experiment, the
subjects completed a brief demographic questionnaire (age,
handedness, hours of sleep, etc.), and ensured that the instructions
were understood. First, the psychological self-report measures of
sleepiness and fatigue were conducted. Subjective sleepiness was
assessed by means of the Stanford Sleepiness Scale and the
Karolinska sleepiness scale, and subjective fatigue was measured
with the help of the Samn–Perelli checklist, Li’s subjective fatigue
scale and Borg’s CR-10 scale [4,17–20]. Subsequently, the subjects
were required to simply relax and try to think of nothing in
particular, and recorded the EEG in the eyes-closed resting state for
5 min before starting the experimental session. They then
performed the cognitive task either until 2 h elapsed or until
volitional exhaustion occurred. Subjects were instructed to
respond as quickly as possible, maintaining a high level of
accuracy. Similar EEG recording was conducted immediately after
the completion of the cognitive task. The same psychological rating
was also carried out. The measurements were carried out at two
epochs: pre-task, that was before task; post-task, that was
immediately after task.

EEGs were recorded by a Neuroscan 32 channel system
(Neuroscan, El Paso, TX, USA) with international 10–20 lead
systems. Fp2, Fp1, F4, F3, A2, A1, C4, C3, P4, P3, Fz, Cz and Pz leads
were used with Ag/AgCl electrodes. Recordings were referenced to
linked-mastoids. Two additional bipolar pairs of electrodes were
placed to record horizontal and vertical EOG. Skin impedance was
below 5 kV on all electrodes. Physiological signals were filtered by
band pass filter with bandwidth from 0.01 to 100 Hz. The signal
was sampled at 500 Hz and digitized at 16 bit. Eye movement
contamination was removed from EEG signal by the adaptive filter
based on least mean square algorithm. Artifact rejection is done by
visually inspecting the EEG.

2.3. Feature extraction based on complexity parameters

Two complexity parameters: approximate entropy (ApEn) and
Kolmogorov complexity (Kc) are used to quantify the complexity of
EEG under two mental fatigue states [21–25].

In the present study, after artifact detection and ocular
correction, 1-min EEG data of each trial for each subject in the
session of pre-task and post-task are selected to be analyzed. The
EEG signal is then down re-sampled at 250 Hz before it is analyzed
by using wavelet packet and nonlinear complexity methods. The
first 10 s EEG data is chosen as basic data segment and steps by 1 s
data. By shifting the data segment step-by-step for whole trial,
5100 data segments are obtained.

Wavelet packet analysis is performed to every EEG data
segment [26,27]. Daubechies 10 is adopted as the mother wavelet.
After eight-octave wavelet packet decomposition, the EEG
components of the following five frequency bands are obtained:
total (0.5–30 Hz), delta (0.5–3.5 Hz), theta (4–7 Hz), alpha (8–
12 Hz), and beta (13–30 Hz). Then ApEn and Kc are calculated
(Appendices A and B) for all EEG data segments in five frequency
bands, respectively.

2.4. Reducing the dimensionality of feature vectors based on KPCA

algorithm

KPCA is a technique of generalizing linear PCA into nonlinear
case by using the kernel method [28,29]. As a nonlinear feature
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