
Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 90–111

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: www.elsevier.com/locate/websem

RIQ: Fast processing of SPARQL queries on RDF quadruples
Anas Katib, Vasil Slavov, Praveen Rao ∗
Department of Computer Science and Electrical Engineering, University of Missouri-Kansas City, Kansas City, MO, USA

a r t i c l e i n f o

Article history:
Received 9 April 2015
Received in revised form
31 January 2016
Accepted 16 March 2016
Available online 5 April 2016

Keywords:
RDF
Quadruples
SPARQL
Query processing
Knowledge graphs

a b s t r a c t

In this paper, we address the problem of fast processing of SPARQL queries on a large RDF dataset,
where the RDF statements are quadruples (or quads). Quads can capture provenance or other relevant
information about facts. This is especially powerful in modeling knowledge graphs, which are becoming
increasingly important on the Web to provide high quality search results to users. We propose a new
approach called RIQ that employs a decrease-and-conquer strategy for fast SPARQL query processing.
Rather than indexing the entire RDF dataset, RIQ identifies groups of similar RDF graphs and creates
indexes on each group separately. It employs a new vector representation for RDF graphs and locality
sensitive hashing to construct the groups efficiently. It constructs a novel filtering index on the groups
and compactly represents the index as a combination of Bloom and Counting Bloom Filters. During query
processing,RIQ employs a streamlined approach. It constructs a query plan for a SPARQLquery (containing
one or more graph patterns), searches the filtering index to quickly identify candidate groups that may
contain matches for the query, and rewrites the original query to produce an optimized query for each
candidate. The optimized queries are then executed using an existing SPARQL processor that supports
quads to produce the final results. We conducted a comprehensive evaluation of RIQ using a real and
synthetic dataset, each containing about 1.4 billion quads. Our results show that RIQ can outperform its
competitors designed to support named graph queries on RDF quads (e.g., Jena TDB and Virtuoso) for a
variety of queries.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Resource Description Framework (RDF) is a standard
model for data representation and interchange on the Web [1].
Today, RDF uses IRIs to name entities and their relationships. It
enables easy merging of different data sources. While RDF was
introduced in the late 90s as the data model for the Semantic
Web, only in recent years, it has gained popularity on the Web.
For example, Linked Data [2] exemplifies the use of RDF on the
Web to represent different knowledge bases (e.g., DBpedia [3]).
Another example is Wikidata [4], a sister project of Wikipedia,
which publishes facts in RDF. Advanced RDF technologies provide
the ability to conduct semantic reasoning in domains such as
biopharmaceuticals, defense and intelligence, and healthcare.
Several companies have adopted Semantic Web technologies for
different use cases such as data aggregation (e.g., Pfizer [5]),
publishing datasets on theWeb and providing better quality search
results (e.g., Newsweek, BBC, The New York Times, Best Buy) [6].

∗ Corresponding author.
E-mail addresses: anaskatib@mail.umkc.edu (A. Katib),

vgslavov@mail.umkc.edu (V. Slavov), raopr@umkc.edu (P. Rao).

Another important use case of RDF is in the representation of
knowledge graphs, which are emerging as a key resource for com-
panies like Google [7], Facebook [8], and Microsoft [9] to provide
higher quality search results and recommendations to users. Es-
sentially, a knowledge graph is a collection of entities, their proper-
ties, and relationships among entities. Using SPARQL [10], queries
can be posed on these knowledge graphs.

In RDF, a fact or assertion is represented as a (subject, predicate,
object) triple. A set of RDF triples can be modeled as a directed,
labeled graph. A triple’s subject and object denote the source and
sink vertices, respectively, and the predicate is the label of the edge
from the source to the sink. An RDF quad is denoted by a (subject,
predicate, object, context). The context (a.k.a. graph name) is used
to capture the provenance or other relevant information of a triple.
This is especially powerful in modeling the facts in a knowledge
graph. Moreover, there are datasets and knowledge bases on the
Web such as Billion Triples Challenges [11], Linking Open Govern-
ment Data (LOGD) [12], and Yago [13] which contain over a billion
quads. One can view these datasets as a collection of RDF named
graphs. Using SPARQL’s GRAPH keyword [10], a query can be posed
on RDF named graphs tomatch a specific graph pattern within any
single RDF graph.

http://dx.doi.org/10.1016/j.websem.2016.03.005
1570-8268/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.websem.2016.03.005
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2016.03.005&domain=pdf
mailto:anaskatib@mail.umkc.edu
mailto:vgslavov@mail.umkc.edu
mailto:raopr@umkc.edu
http://dx.doi.org/10.1016/j.websem.2016.03.005


A. Katib et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 90–111 91

Fig. 1. Dataset D containing RDF quads.

The popularity of the RDF data model coupled with the
availability of very large RDF datasets continues to pose interesting
technical challenges for storing, indexing, and query processing of
RDF data. In this paper, we address the problem of fast processing
of SPARQL queries on RDF quads. In recent years, there has been
a flurry of interest within the database community to develop
scalable techniques for indexing and query processing of large RDF
datasets. Several techniques have been proposed for RDF datasets
containing triples [14–21], where each triple consists of a subject,
predicate, and an object. One may wonder if we can simply ignore
the context in a quad and use any of the previous approaches
for processing a query with the GRAPH keyword. Unfortunately,
this may produce incorrect results, because subpatterns of a graph
pattern may match RDF terms in different graphs. Furthermore,
none of these approaches has investigated how large, complex
graph patterns (e.g., containing undirected cycles) in SPARQL
queries can be processed efficiently. Evidently, RDF-3X [16], a
popular scalable approach for a local environment, yields poor
performance when SPARQL queries containing large, complex
graph patterns are processed over large RDF datasets [22]. This
is because of the large number of join operations that must be
performed to process a query. We argue that, on RDF datasets
containing billions of quads, any approach that first finds matches
for subpatterns in a large graph pattern and then employs join
operations to merge partial matches will face a similar limitation.

Motivated by the above reasons,we developed a new tool called
RIQ (RDF Indexing onQuads) for fast processing of SPARQL queries
on RDF quads. The salient features of RIQ are summarized below:
• RIQ adopts a new vector representation for RDF graphs and

graph patterns in SPARQL queries. This representation captures
the properties of the triples in an RDF graph and triple patterns
in a query. It facilitates grouping similar RDF graphs using locality
sensitive hashing [23] and building a novel filtering index for
efficient query processing. RIQ uses a combination of Bloom Filters
and Counting Bloom Filters to compactly store the filtering index.
In addition to the filtering index, each group of similar RDF graphs
is indexed separately rather than constructing a single index on the
entire collection of RDF graphs.
• RIQ employs a streamlined approach to efficiently process

a SPARQL query via the decrease-and-conquer strategy. Using the
filtering index, RIQ quickly identifies candidate groups of RDF
graphs that may contain a match for the query. It methodically
rewrites the original query and executes optimized queries on the
candidates using a conventional SPARQL processor that supports
quads (e.g., Jena TDB [24]).
• RIQ achieved high performance on a real-world and synthetic

dataset, each containing about 1.4 billion quads, on a variety
of SPARQL queries. It yielded superior performance for high
selectivity queries that matched a small fraction of the named
graphs in a dataset, when I/O was the dominating factor.

A preliminary version of this work appeared in the 17th
International Workshop on the Web and Databases (WebDB)
2014 [22].

The rest of the paper is organized as follows. Section 2 provides
the background onRDF and SPARQL. Section 3 describes the related
work and the motivation of our work. Section 4 describes the
novel design of RIQ including the new vector representation of RDF
graphs and graph patterns, filtering index construction, and the
query processing approach. Section 5 presents the performance
evaluation results and comparison of RIQ with its competitors.
Finally, we provide our concluding remarks in Section 6.

2. Background and preliminaries

In this section, we provide a brief background on RDF and
SPARQL. After that, we describe popular techniques based on
hashing that underpin the design of RIQ.

2.1. RDF and SPARQL

The RDF data model provides a simple way to represent any
assertion as a (subject, predicate, object) triple. A collection of
triples can be modeled as a directed, labeled graph. A triple can
be extended with a graph name (or context) to form a quad. Quads
with the same context belong to the same RDF graph.

Using SPARQL, one can express complex graph pattern queries
on RDF graphs. A triple pattern contains variables (prefixed by ?)
and constants. A Basic Graph Pattern (BGP) in a query combines
a set of triple patterns. During query processing, the variables in
a BGP are bound to RDF terms in the data, i.e., the nodes in the
same RDF graph, via subgraph matching [10]. Common variables
within a BGP or across BGPs denote a join operation on the variable
bindings of triple patterns. UNION combines bindings of multiple
graph patterns; OPTIONAL allows certain patterns to have empty
bindings; FILTER EXISTS/NOT EXISTS tests for existence/non-
existence of certain graph patterns. The variable ?g will be bound
to the contexts of those RDF graphs that contain a match for the
entire set of graph patterns and predicates, if any, inside the GRAPH
block.

Example 1. Consider the datasetD shown in Fig. 1, which contains
twoRDF graphsG1 andG2. Consider a queryQ shown in Fig. 2. It has
five BGPs. Consider the pattern BGP1 inQ . The bindings for the vari-
able ?city in the triple pattern ?city onto:areaLand ?area
are joined with those for ?city in ?city onto:areaCode
?code. If Q is executed on D, ?g will be bound only to the con-
text of G1, i.e., <http://dbpedia.org/data/Oswego.xml>.
Note that BGP3 does not have a match in G2 as the only country
mentioned in G2 is Cyprus.



Download English Version:

https://daneshyari.com/en/article/557705

Download Persian Version:

https://daneshyari.com/article/557705

Daneshyari.com

https://daneshyari.com/en/article/557705
https://daneshyari.com/article/557705
https://daneshyari.com

