
Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 184–206

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: www.elsevier.com/locate/websem

Triple Pattern Fragments:
A low-cost knowledge graph interface for the Web
Ruben Verborgh a, Miel Vander Sande a, Olaf Hartig b, Joachim Van Herwegen a,
Laurens De Vocht a, Ben De Meester a, Gerald Haesendonck a, Pieter Colpaert a
a Ghent University – iMinds, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium
b Hasso Plattner Institute, University of Potsdam, Prof.-Dr.-Helmert-Straße 2-3, 14482 Potsdam, Germany

a r t i c l e i n f o

Article history:
Received 31 March 2015
Received in revised form
31 January 2016
Accepted 6 March 2016
Available online 21 March 2016

Keywords:
Linked Data
Linked Data Fragments
Querying
SPARQL

a b s t r a c t

Billions of Linked Data triples exist in thousands of RDF knowledge graphs on the Web, but few of those
graphs can be queried live from Web applications. Only a limited number of knowledge graphs are
available in a queryable interface, and existing interfaces can be expensive to host at high availability.
To mitigate this shortage of live queryable Linked Data, we designed a low-cost Triple Pattern Fragments
interface for servers, and a client-side algorithm that evaluates SPARQL queries against this interface. This
article describes the Linked Data Fragments framework to analyzeWeb interfaces to Linked Data and uses
this framework as a basis to define Triple Pattern Fragments. We describe client-side querying for single
knowledge graphs and federations thereof. Our evaluation verifies that this technique reduces server
load and increases caching effectiveness, which leads to lower costs to maintain high server availability.
These benefits come at the expense of increased bandwidth and slower, but more stable query execution
times. These results substantiate the claim that lightweight interfaces can lower the cost for knowledge
publishers compared to more expressive endpoints, while enabling applications to query the publishers’
data with the necessary reliability.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Before the Linked Data initiative [1], the SemanticWeb suffered
from a chicken-and-egg situation: there were no applications be-
cause there was no data, and there was no data because no appli-
cations were using it. Fortunately, Tim Berners-Lee’s credo ‘‘Raw
data now’’ has caught on, and now more knowledge graphs exist
as Linked Data than ever before [2]. Statistics from the LODstats
project [3] indicate that, as of March 2015, there are over 88 bil-
lion Linked Data triples distributed over 9960 knowledge graphs.1
Thus, the ball is now back in the Semantic Web’s court: given this
tremendous amount of data in various domains, we should be able
to build the envisioned intelligent applications [4].

Unfortunately, the availability of live queryable knowledge
graphs on the Web still appears to be low. With ‘‘live queryable’’,
we mean Linked Data that can be queried without first download-
ing the entire knowledge graph. With ‘‘low availability’’, we mean
the two-sided problem the Semantic Web is currently facing: (i)

E-mail address: ruben.verborgh@ugent.be (R. Verborgh).
1 http://stats.lod2.eu/.

the majority of knowledge graphs is not published in queryable
form [3] and (ii) knowledge graphs that are published in a public
SPARQL endpoint suffer from frequent downtime [5]. This unavail-
ability becomes all the more problematic if we consider queries
over multiple, distributed knowledge graphs. It is therefore under-
standable that many publishers choose the safe option, avoiding
the responsibility of hosting a SPARQL endpoint by offering a data
dump instead. Yet, this does not bring us closer to the Semantic
Web because such data dumps need to be downloaded and stored
locally so that the actual querying can happen offline. Furthermore,
their consumption is only possible on sufficiently powerful ma-
chines – not on mobile devices, whose popularity continues to in-
crease – and requires a technical background to set up. A significant
amount of Linked Data knowledge graphs is therefore not reliably
queryable, nor easily accessible, on the Web.

If wewant SemanticWeb applications on top of live knowledge
graphs to become a reality, we must reconsider our options
regarding Web-scale publication of Linked Data. Between the
two extremes of data dumps and SPARQL endpoints lies a whole
spectrum of possible Web interfaces, which has remained largely
unexplored. The challenge is to methodically analyze the benefits
and drawbacks an interface brings for clients and servers. In

http://dx.doi.org/10.1016/j.websem.2016.03.003
1570-8268/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.websem.2016.03.003
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2016.03.003&domain=pdf
mailto:ruben.verborgh@ugent.be
http://stats.lod2.eu/
http://dx.doi.org/10.1016/j.websem.2016.03.003


R. Verborgh et al. / Web Semantics: Science, Services and Agents on the World Wide Web 37–38 (2016) 184–206 185

particular, we aim for solutions with minimal server complexity
(minimizing the cost for data publishers) while still enabling live
querying (maximizing the utility for Semantic Web applications).

In this article, we present and extend our ongoing work on
Linked Data Fragments [6], a framework to analyze Linked Data
publication interfaces on theWeb, and Triple Pattern Fragments [7],
a low-cost interface to triples. Novel contributions include in par-
ticular:

• an extended formalization (Sections 4 and 5) that details the
response format and its considerations (Section 5.3);
• a detailed discussion of Triple Pattern Fragments publication

and their relationship to existing interfaces (Sections 4.3 and
5.4);
• an extension of the query execution algorithm toward other

SPARQL constructs (Section 6.3) and toward a federation of
interfaces (Section 6.4);
• additional experimental results that

– measure queries on the real-world knowledge graph DBpe-
dia, revealing that the type of queries has a stronger influence
than knowledge graph size (Section 7.2);

– assess the impact of different serialization formats, which
reveals a limited gain for specialized binary formats, likely
due to the small page size (Section 7.3);

– extend the application fromone knowledge graph tomultiple
knowledge graphs, where we find that our proposed solution
performs well for certain types of queries with regard to
precision, recall, and/or execution time, but less so for other
types (Section 7.4).

The remainder of this paper is structured as follows. Section 2
derives the research questions and hypotheses underlying this
work, based on quantifiable characteristics for Web APIs. In Sec-
tion 3, we describe existing solutions and highlight their advan-
tages and disadvantages, focusing especially on the potential for
live query execution. Section 4 introduces the Linked Data Frag-
ments conceptual framework, followed by the definition of the
Triple Pattern Fragments interface in Section 5. Section 6 details
a client-side query algorithm for basic graph patterns, and extends
it toward both general SPARQL queries and federations of knowl-
edge graphs. We present an experimental evaluation in Section 7.
Finally, Section 8 concludes the article with lessons learned and
starting points for further research.

2. Problem statement

For querying knowledge graphs on the Web, there exist inter-
faces with powerful query capabilities (e.g., SPARQL endpoints)
and interfaces with low server-side CPU cost (e.g., data dumps).
The task of query evaluation currently happens either fully on the
server side, or fully on the client side. However, there is a lack of
options that balance these and other trade-offs in different ways.
In this article, we aim to define and analyze an interface that dis-
tributes the load of query evaluation between a client and a server.
To this end,we first define different characteristics relevant toWeb
Application Programming Interfaces (Web APIs) in Section 2.1. Us-
ing these characteristics, we then formulate a research question
and associated hypotheses in Section 2.2.

2.1. Characteristics for Web APIs

A crucial architectural choice is the definition of the interface,
which in turn reflects on characteristics such as performance, cost,

cache reuse, and bandwidth. Each of these can be considered from
the perspective of either servers in general, or clients performing
a specific task [8].

Performance Performance is the rate at which tasks can be
completed. For the server, performance can be measured
as the number of requests it can handle per time interval,
i.e., the inverse of the average request processing time.
However,weneed to take into account that oneAPImight
offer more granular requests than another. Therefore, to
solve the same task, a client might require a different
number of requests on different APIs.

Cost Cost is the amount of resources a request consumes. For
the server, the resources typically involve CPU, RAM, and
IO consumption. From the client perspective, the cost
consists of processing one or multiple server responses
into the desired result for a given task.

Cache reuse Cache reuse is the ratio of items that are requested
multiple times from the cache versus thenumber of items
it stores. The server might offer responses that can be
reused by multiple clients, which can then subsequently
be served from a cache instead, saving on server cost.

Bandwidth The bandwidth for the client is the product of the
number of retrieved responses and the average response
size (ignoring the relatively small request size). This is the
same for the server, except that a portion of the responses
might be cached and thus involve cache bandwidth
instead of server bandwidth.

Given a task T a client needs to complete, twoWeb APIs I and I ′
might exhibit different behavior. For instance, a client might be
able to complete T using a single large operation o with server-
side cost c against I , whereas n smaller operations o′1, . . . , o

′
n with

costs c ′1, . . . , c
′
n might be needed in the case of I ′. We assume here

that the cost c ′i of each individual smaller operation o′i is less than
the cost of the large operation, c , but the total server cost for I ′
is

n
1 c
′

i , which may be greater than c. If, however, some of these
n smaller operations are cacheable,multiple clients executing tasks
similar to T could reuse already generated responses from a cache,
lowering the total number of requests – and thus the cost – for the
server. Which of these factors dominates depends on the number
of clients, the cost per request, the cache reuse ratio, the similarity
of tasks, and other factors. In general, if costs increase to a certain
level, a server might become fully occupied and unable to fulfill
new incoming requests, and hence start a period of unavailability.
Due to its impact on availability, it is thus important to examine
how choosing a specific interface influences the cost for the server.

Lastly, we introduce an important practical characteristic.
When designing an API, we need to consider the restrictions the
interface places on clients. For this reason, we also assess the
overhead for clients, which we express as follows:

Efficiency Efficiency for the client is the fraction of data retrieved
from the server during the execution of a task over the
amount of data required to execute that task.

2.2. Balancing trade-offs for publishing and querying Linked Data on
the Web

Our goal is to enable reliable applications on top of knowledge
graphs on the Web. This requires Linked Data that is (i) available
for a high percentage of time (ii) in a queryable form. Given that
the interface is the aspect of cost we have most control over, and
that the interface directly determines queryability, we define our
main research question as follows.



Download English Version:

https://daneshyari.com/en/article/557710

Download Persian Version:

https://daneshyari.com/article/557710

Daneshyari.com

https://daneshyari.com/en/article/557710
https://daneshyari.com/article/557710
https://daneshyari.com

