
Web Semantics: Science, Services and Agents on the World Wide Web 6 (2008) 274–282

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journa l homepage: www.e lsev ier .com/ locate /websem

Potluck: Data mash-up tool for casual users

David F. Huynh ∗, Robert C. Miller, David R. Karger
MIT Computer Science and Artificial Intelligence Laboratory 32 Vassar St., Cambridge, MA 02139, USA

a r t i c l e i n f o

Article history:
Received 28 May 2008
Received in revised form 19 August 2008
Accepted 15 September 2008
Available online 1 November 2008

Keywords:
Mash up
Drag and drop
Faceted browsing
Simultaneous editing
Ontology alignment
End-user programming
Semantic web
RDF

a b s t r a c t

As more and more reusable structured data appears on the Web, casual users will want to take into their
own hands the task of mashing up data rather than wait for mash-up sites to be built that address exactly
their individually unique needs. In this paper, we present Potluck, a Web user interface that let’s casual
users—those without programming skills and data modeling expertise—mash up data themselves.

Potluck is novel in its use of drag and drop for merging fields, its integration and extension of the faceted
browsing paradigm for focusing on subsets of data to align, and its application of simultaneous editing for
cleaning up data syntactically. Potluck also lets the user construct rich visualizations of data in-place as the
user aligns and cleans up the data. This iterative process of integrating the data while constructing useful
visualizations is desirable when the user is unfamiliar with the data at the beginning—a common case—and
wishes to get immediate value out of the data without having to spend the overhead of completely and
perfectly integrating the data first.

A user study on Potluck indicated that it was usable and learnable, and elicited excitement from pro-
grammers who, even with their programming skills, previously had great difficulties performing data
integration.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The construction of a Web 2.0 mash-up site is typically done by
programmers. In this paper, we introduce Potluck, a tool that lets
casual users—non-programmers—make mash-ups by themselves:

• Potluck allows the user to merge fields from different data
sources, so that they are treated identically for sorting, filtering,
and visualization. Fields are merged using simple drag and drop
of field names.

• Potluck provides an efficient means for the user to clean up
data syntactically, homogenize data formats, and extract fields
syntactically embedded within existing fields, all through the
application of simultaneous editing [9].

• Potluck supports faceted browsing [19] to let users explore and
identify subsets of data of interest or subsets of data that need
alignment and clean up.

In contrast, today’s mash-up construction can only be done by
programmers using complex technologies as it involves many tech-
nical challenges, particularly:

∗ Corresponding author. Tel.: +1 617 733 3647.
E-mail addresses: dfhuynh@mit.edu, dfhuynh@csail.mit.edu (D.F. Huynh),

rcm@csail.mit.edu (R.C. Miller), karger@csail.mit.edu (D.R. Karger).

• scraping data from the original sites, where it may be hidden
behind complex queries and web templates;

• aligning the original sites’ data into a single coherent data model;
and

• creating an effective visualization of the merged data.

These challenges are only worth to overcome for mash-ups
that will appeal to many people, and they prevent the construc-
tion of mash-ups that are personal or narrow in appeal, serving
only a few users and giving little return on investment of efforts
and resources. For example, a high-school student writing a term
report on the knowledge and use of mycology (mushrooms) among
Polynesian tribes will be unlikely to find a mash-up site contain-
ing data on both mycology as well as Polynesians. She will also
unlikely find enough resources (money and programming skills)
to get such a site built quickly enough to meet her deadline, if
ever built at all. The long tail of mash-up needs is thus left unan-
swered. As more and more data becomes readily accessible on
the Semantic Web, the number of mash-ups potentially useful
but never built increases significantly and spells a huge oppor-
tunity miss, reducing the value proposition of the Semantic Web
itself.

We conducted a user study of Potluck and report the results
here, which show that Potluck is a viable mash up solution for
casual users and that it even has features desired by program-
mers.

1570-8268/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.websem.2008.09.005

http://www.sciencedirect.com/science/journal/15708268
http://www.elsevier.com/locate/websem
mailto:dfhuynh@mit.edu
mailto:dfhuynh@csail.mit.edu
mailto:rcm@csail.mit.edu
mailto:karger@csail.mit.edu
dx.doi.org/10.1016/j.websem.2008.09.005


D.F. Huynh et al. / Web Semantics: Science, Services and Agents on the World Wide Web 6 (2008) 274–282 275

2. Scenario

Before describing the user interface of Potluck, we motivate
it with a scenario that illustrates various idiosyncrasies of per-
sonal mash-up construction. Let us be optimistic that within a
decade, the Semantic Web will be prevalent and RDF data will be
everywhere. This scenario argues that even in this future world,
users will still face problems making mash-ups between data
sources.

In 2017, a historian named Henry is documenting the first cases
of a rare genetic disease called GD726. These first cases occurred
in the Valentine family in the 1820s. He wants to include in his
final report a genealogical tree of the Valentine family, annotated
with the disease’s infliction, as well as a comprehensive table of the
Valentines’ data in an appendix.

Like most historians, Henry is not a programmer but he is expe-
rienced in collecting and managing data in his professional work.
The proliferation of RDF means that Henry does not need program-
ming skills to scrape HTML himself: all the information needed for
his research has been converted into RDF by various independent
organizations and individuals, both professionals and enthusiasts.
Henry thinks it would be trivial to simply pool the RDF together
and call it done.

Henry tracks down various birth certificate issuing offices and
death certificate issuing offices where the Valentines lived for their
RDF data. He notes that some offices use dc:date in their data to
mean “birth date,” some to mean “death date,” and some “certificate
issuing date.” It would be disastrous to consider all the dc:dates
the same even if the same predicate URI is used.

Henry also tracks down hospital records, which contain hos-
pital:tod (short for “time of death”). Hence, hospital:tod is
equivalent to some of the dc:dates. It would be hard to match
hospital:tod with dc:date based on string analysis alone, yet
match for some of the cases only.

The records all have geographical location names, but these
names are not fully qualified. Those responsible for digitizing them
thought that since all locations were within their country, there
was no need to include the country name.

As a consequence, Henry needs to append the country name to
the many location names in order to map them.

People’s names are encoded in two different forms: “first-name
last-name” in some data sets and “last-name, first-name” in others.
Nick names are also present (e.g., “Bill” instead of “William”, and
“Vicky” instead of “Victoria”).

The hospital records also pose problems. While most of their
admittance dates are in ISO 8601 format, a few are of the kind
“Easter Day 1824.” Such sloppiness has been observed in indus-
trial and institutional databases, and should be expected on the
Semantic Web.

Despite all these problems, there is one good thing about the
data: Henry can reliably get the mother and father of each Valentine
through the gen:mother and gen:father predicates, which seem
to be very widely adopted. This helps Henry construct a genealog-
ical tree visualization.

However, as males and females both have equal chance of pass-
ing on GD726, Henry wants to treat gen:mother and gen:father
the same while tracing the disease through the family. Unfor-
tunately, adding an owl:sameAs equivalence between those two
predicates will break his genealogical tree.

While all parties involved in this scenario acted logically and
responsibly, Henry still ends up with a mess of RDF. To fix up the
data, Henry must be able to:

• Merge dc:dates into several groups (the birth dates and the
death dates) even though they all use the same predicate URI.

This requires distinguishing the fields by their origins rather than
just by their URIs.

• Merge gen:mother and gen:father together in some situations
while keeping them separate in other situations. This precludes
the simple approach of adding owl:sameAs statements in the
data model to implement equivalences.

• Edit the data efficiently to unify its syntax.
• Fix up the data iteratively as he learns more and more about the

data.

There is one more challenge that Henry faces which we choose
not to address at the moment: that of entity alignment. A person
might be referred to by different URIs in different sources, and
Henry must make them all equivalent to one another. We leave
this task to future work, as we have not found any reasonable user
interface solution to it.

3. User interface

We now describe Potluck’s user interface, showing how it
addresses the problems in the scenario above. The reader is encour-
aged to view a screencast to understand Potluck’s interactivity:
http://simile.mit.edu/potluck/.

Fig. 1 shows the starting screen of Potluck where the user can
paste in several URLs of Exhibit-powered web pages and click Mix
Data. This results in Fig. 2, which lists data records from the original
web pages. The records are interleaved by origins—the pages from
which they have been extracted—to ensure that some records of
each data set are always visible.

Fields are rendered as field tags: . Field
tags are color-coded to indicate their origins: blue from one source
and pink from another in Fig. 2. Three core fields, label, type, and
origin, are automatically assigned to all records and their tags are
colored gray. origin is generated from each source URL. label and
type are reserved as they are core Exhibit fields and assumed to be
used in a uniform manner across different exhibits.

Fields from different origins having the same name are con-

sidered different. For example, while means office phone,

might mean secretary’s phone. Or more dangerously,
dc:date in the scenario (in Section 2) has several distinct mean-
ings. These semantic differences, subtle or significant, might or
might not be important to one particular user at one particular
moment in time. Keeping the fields apart rather than automati-
cally merging them together allows the user to make the decision
whether or not to merge.

3.1. Creating columns and facets

A field tag can be dragged and dropped onto the gray column
to the left (Fig. 2) to create a new column listing that field, or onto
the gray box to the right to create a facet for filtering by that field.
Fig. 3 shows a newly created column. A column or facet can be
moved by dragging its field tag and dropping the tag between other

columns or facets. Deleting a column or facet (by clicking it )
removes the column or facet from the display but does not delete
the corresponding field’s data.

3.2. Merging fields

A field tag can be dropped onto an existing column or facet in
order to make that column or facet contain data for both the orig-
inal field and the newly dropped field. Such an operation creates a
merged field, whose field tag is rendered as a visual juxtaposition of

http://simile.mit.edu/potluck/


Download English Version:

https://daneshyari.com/en/article/557907

Download Persian Version:

https://daneshyari.com/article/557907

Daneshyari.com

https://daneshyari.com/en/article/557907
https://daneshyari.com/article/557907
https://daneshyari.com

