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a  b  s  t  r  a  c  t

This  paper  proposes  a new  framework  to  obtain  quality  respiratory  variability  signals  from  the  raw
breathing  recorded  in  neonatal  intensive  care  units  (NICUs).  It combines  three  consecutive  blocks:  an
automatic  rejection  of artifacts,  implemented  by  a logistic  regression  classifier,  a two-step  filtering  pro-
cess,  and  the  identification  of  respiratory  cycles,  implemented  by  a peak  detection  algorithm.  By means  of
a gold  standard  built  from  a preterm  infants  database,  the  performances  of the  first  and  third  blocks  have
been  evaluated.  While  the former  obtains  a 86%  of specificity  and  sensitivity,  the latter  attains  a  respec-
tive  97%.  The  interest  of our  proposal  in  the  clinical  domain  is illustrated  by a  promising  application  to
detect  promptly  and  non-invasively  the  presence  of neonatal  sepsis  in the  NICU.

© 2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Preterm infants – born before 37 weeks of gestation – exhibit
a very unstable breathing, typified by apneas or pauses in venti-
lation that may  be accompanied by bradycardia, a decrease of the
heart beat rhythm [1,2]. This phenomenon, known as apnea of pre-
maturity (AOP), is a consequence of the still underdeveloped brain
and lungs, and is inversely related to the gestational age at birth
[3,4]. AOP may  appear spontaneously, but it can also be provoked
or become more severe when other pathologies – specially sepsis,
i.e. a generalized infection – are present [5]. Regardless of their ori-
gin, sighs and respiratory pauses are the mechanism responsible for
the variable manner in which the infants breathe during sleep. Typ-
ically, three different patterns can be identified: (1) Regular: quiet
breathing with low variability in both amplitude and frequency.
(2) Erratic: irregular breathing with high variability in both ampli-
tude and frequency including several episodes of AOP. (3) Periodic:
the alternation of pauses lasting a few seconds followed by several
rapid and shallow breaths [6].

The continuous monitoring of breathing and cardiac frequencies
are of crucial importance to an early intervention and avoid or pal-
liate the associated risks with recurrent apnea-bradycardia [7,8].
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A large effort has also been done to predict bradycardia [9] and to
detect sepsis from the analysis of heart rate series [10,11], but the
respiratory signal has retained less attention. In the present work,
breathing signals acquired in neonatal intensive care units (NICUs)
are properly processed so that they can be further analyzed to add
more insights about the pathological state of the premature infant.
As raw signals, provided by abdominal strain gauges, are uncali-
brated and cannot be used to study the air flow, they are converted
to respiratory variability series (RVS). This data describes the respi-
ratory rhythm by simply sequencing the time duration of breaths
and holds interesting properties, such as long-range dependence
[12].

This paper is organized as follows: Section 2 presents the
database, composed by the breathing traces and clinicians’ manual
marks (or ‘old standard’) and the framework to obtain clean signals.
Section 3 describes the evaluation methodology as well as the per-
formance of the detection methods. In Section 4, a demonstrative
example to support the interest of the here-proposed framework
is reported. Finally, a conclusion is drawn in the last section.

2. Materials and methods

2.1. Data selection

The breathing signals employed in this work have been selected
from a larger database, collected at the University Hospital of
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Table 1
Description of the testing cohort (mean ± std. dev.). There are no significant differ-
ences between the age and weight of infants and duration of records.

Sepsis No-sepsis

Infants 16 16
PMA  (weeks) 30.5 ± 1.73 30.4 ± 1.64
Postnatal age (days) 15.6 ± 12.2 15.8 ± 10.7
Weight (kg) 1.11 ± 0.27 1.12 ± 0.23
Recording time (h) 2.14 ± 1.07 2.61 ± 0.64

Rennes (France), already involved in previous studies [11]. There-
fore, the ensemble of the 51 preterm infants served to derive two
cohorts with different purposes. The first one has been employed
to examine the performances of the artifact rejection and cycle
detection (validation cohort), hence it needed to be labeled manu-
ally by an experienced clinician in order to establish the references
to the automated processes. The remaining group (testing cohort)
provides data to illustrate the clinical example.

Breathing was recorded by abdominal strain gauges
(Pneumotrace©, Morro Bay, USA), piezoelectric transducers
responding linearly to changes in the circumference during respi-
ration. Signals, originally sampled at Fs = 400 Hz were subsequently
down-sampled to 64 Hz (Fr)  after eliminating the frequency con-
tent above Fr/2 by a low-pass filter (7th order Butterworth) to
avoid aliasing.

2.1.1. Validation cohort
This group is constituted by five preterm infants 31.0 ± 1.6

weeks post-menstrual age (PMA) and 1.06 ± 0.29 kg of weight.
The selection was performed visually by clinicians to ensure the
inclusion of different breathing patterns. A Matlab program was
purposely designed to facilitate the labeling procedure to the clin-
ician. It consisted on marking intervals of 10 s (W = 10 s) as clean
(class 0) or artifacted (class 1) in a 30-s sliding window. The ECG
signal was also displayed to help the observer to make the decision.
With this program, a total of 5167 marks (14.35 h) were obtained,
the 11.8% of them classified as artifacts.

In a second instance, artifact-free marked periods were used
to build the references for the automatic detection of breathing
cycles. Thirty minutes of clean breathing were randomly selected
per each infant and displayed by another custom-made Matlab
tool, that allowed the clinician to visually annotate inspiration and
exhalation time intervals. This procedure provided 7234 correctly
identified cycles, equivalent to almost 2h30 of breathing.

2.1.2. Testing cohort
The second dataset is composed by a selection of sixteen infected

(Sepsis) and sixteen non-infected infants (No-sepsis) paired by age,
gender and weight criteria (see Table 1). The diagnostic of sepsis
included the combination of an inflammatory response, i.e. C-
reactive protein (CRP) > 5 mg/l 24 h after the recording and positive
blood cultures. In non-infected infants, no inflammatory response
was observed, i.e. a CRP < 5 mg/l 24 h after the recording and
resulted in negative blood cultures.

Given the well-known dependence on maturation, comparing
age-equivalent sick and healthy infants is mandatory in the inves-
tigation of septicemic processes [13].

2.2. Methods

The processing framework to obtain RVS is composed by three
blocks (see Fig. 1): (i) rejection of artifacted epochs involving gross
body movements in raw signals by an automatic classifier based on
logistic regression, (ii) two-step filtering process, including band-
pass and smoothing filters and (iii) detection of the breath intervals
in the clean data.

Fig. 1. Flowchart of the proposed method to obtain clean respiratory variability
series, identifying the three main blocks. (1) Artifact rejection: After segmenting
the pre-processed raw signals, a set of d features (X) are obtained. A logistic func-
tion is then computed using X and a vector of regression coefficients (w), learned
from the gold standard. The class probability p serves to reject the breathing excerpt
if  this exceeds the cut-off value, chosen according to a sensitivity/specificity pair.
(2)  Filtering: Artifact-free data is next filtered by a band-pass filtered and its power
spectrum is estimated to find the main frequency, (Fm), necessary to find the param-
eters of the smoothing (Savitzky-Golay) filter. (3) Cycle detection: A peak detector
governed by a threshold Th finds minima and maxima in the trace, i.e. the time
instants of breaths that determine the RVS.

2.2.1. Artifact rejection
The study of the statistical distribution of the energy or root-

mean square (RMS) in breathing signals is a common artifact
detection criterion because in general, gross body movements
induce higher amplitudes on the strain gauges. For instance, Motto
et al. [14] applied this feature in breathing traces (both abdominal
and thoracic) from 45 weeks PMA  full term infants, employing a
thresholding detector optimized by a Neyman–Pearson approach
[15] that attained 89% for sensitivity and 88% for specificity.
However, an energy-based threshold could be in some cases too
restrictive due to the effect of deep breaths and impedance changes
in the amplitudes.

On the other hand, an artifacted component could account for
an unexpected transient event or for a background activity, like
muscle activity or noise. Thus, in view of the noisy environments
our breathing signals come from, an alternative criterion to detect
the artifacts could be to measure the randomness of the traces
by means of the entropy, as Mammone et al. [16] did in EEG sig-
nals by means of ICA and Renyi’s entropy. Nevertheless, the erratic
breathing patterns typical in preterm infants (see Fig. 2) could be
an inconvenient in entropy measures and lead the classifier to false
positive detections.
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