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a  b  s  t  r  a  c  t

Despeckling  is of great  interest  in  ultrasound  medical  images.  The  inherent  limitations  of  acquisition
techniques  and  systems  introduce  the  speckles  in  ultrasound  images.  These  speckles  are  the  main  factors
that degrade  the  quality  and  most  importantly  texture  information  present  in ultrasound  images.  Due
to these  speckles,  experts  may  not  be able  to  extract  correct  and  useful  information  from  the  images.
This  paper  presents  an  edge  preserved  despeckling  approach  that  combines  the  nonsubsampled  shearlet
transform  (NSST)  with improved  nonlinear  diffusion  equations.  As  a new  image  representation  method
with  the  different  features  of localization,  directionality  and  multiscale,  the  NSST  is  utilized  to  provide
the  effective  representation  of the image  coefficients.  The  anisotropic  diffusion  approach  is  applied  to the
noisy  coarser  NSST  coefficients  to  improve  the noise  reduction  efficiency  and  effectively  preserves  the
edge  features.  In  the diffusion  process,  an  adaptive  gray  variance  is  also incorporated  with  the gradient
information  of  eight  connected  neighboring  pixels  to  preserve  the  edges,  effectively.  The  performance
of  the  proposed  method  is evaluated  by conducting  extensive  simulations  using  both  the standard  test
images  and several  ultrasound  medical  images.  Experiments  show  that the  proposed  method  provides
an  improvement  not  only  in  noise  reduction  but also  in the preservation  of more  edges  as  compared  to
several  existing  methods.

© 2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Currently, the research in medical imaging has produced many
different imaging modalities for the clinical purpose. Among the
different imaging modalities, ultrasound imaging is of a particular
interest in the medical diagnosis of neck, chest, liver, abdomi-
nal cavity, gallbladder, pancreas, spleen, adrenal glands, kidney,
prostate and scrotum due to its cost effectiveness, portability,
acceptability and safety [1]. However, the ultrasound images are
of relatively poor quality due to speckles (considered as a multi-
plicative noise) present in them. In addition to multiplicative noise,
sometimes ultrasound (US) images also suffer from random addi-
tive Gaussian noise. The presence of speckles affects the human
interpretation as well as accuracy of computer-assisted methods.
Therefore, detection and enhancement of the boundaries between
different cavities and organs are of great need in ultrasound images
and is considered as a challenging problem. Sometimes, this pro-
cess may  suppress the important details of the ultrasound images.
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Thus, noise reduction algorithms should be designed in such a man-
ner that they suppress the noise as much as possible without any
significant loss of information presented in the US images.

Speckle reduction can be done in two  categories viz. image aver-
aging and image filtering methods [2]. Image averaging methods
usually lead to the loss of spatial resolution. Filtering methods are
practical alternative for most of the clinical applications. Further-
more, it can be classified as single scale spatial filtering such as
linear [3,4], nonlinear, adaptive methods [4,5], multiscale spatial
filtering such as diffusion based methods [2,6–8] and others multi-
scale methods in different transform domains such as pyramid [9],
wavelet [10], ridgelet [11] and curvelet [12]. Simple mathematical
linear filters such as mean filter degrade the sharp transitions (line
and edges) of the image [4]. Most popular nonlinear filters such as
median filter are employed to all the pixels whether they are cor-
rupted or not. The weighted median filter is also used for the noise
reduction. It is able to retain more edges than the classical median
filter [5]. However, there is a loss of resolution by suppressing the
fine details. In the category of multiscale spatial filtering, partial
differential equations (PDE) are used to implement some filters for
denoising purpose. The most popular methods include Lee filter
[13], Kuan method [14] and anisotropic diffusion equations pro-
posed by Perona and Malik [6]. So it is called P–M equations that
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provide a method for image smoothing. A lot of work has been done
with anisotropic diffusion equations in such a way that the impor-
tant structural information can be retained in the denoised images
[8,15–17]. Besides the diffusion methods, various multiscale meth-
ods have been employed for noise reduction [10,12,18–21].

Currently, lots of research work on image processing is concen-
trated in the transform domain. In that series, wavelet thresholding
has been presented as a true signal estimation technique that
exploits the capabilities of wavelet transform (WT) for signal
denoising [18,19]. The main strength of wavelet thresholding is
its capability to process the different frequency components of
an image, separately [22]. Thus, many efforts have been made to
suppress the different types of noise and to overcome the limita-
tions of spatial domain filtering by wavelet thresholding methods
[19–21]. However, it may  lead to the formation of some visual arti-
facts around sharp discontinuities. The WT  is able to efficiently
represent a function with one dimensional singularity. However,
it is less efficient in reflecting the sharp transitions such as line
and curve singularities due to its limitation of direction [23]. To
overcome this limitation, ridgelet transform has been proposed to
provide the information about the orientation of the linear edges
[11]. However, it does not represent the two dimensional sin-
gularities. Donoho et al. [12] has presented curvelet transform
(CT) used to represent two dimensional singularities with the
smooth curve and provides better denoising and edge preserva-
tion results. Contourlet transform proposed by Vetterli et al. [24]
performs well in noise reduction due to application of multiscale
Laplacian pyramid (LP) followed by directional filter banks. How-
ever, it has less directional features than curvelets. To represent
the edges more efficiently, Labate et al. introduced a new multi-
scale analysis tool called shearlet that has all properties like other
MGA  tools as multiscale, localization, anisotropy and direction-
ality [25,26]. The decomposition of the shearlet transforms (ST)
consists of multiscale and multidirectional decomposition that are
similar to contourlets except that there is no limitation on the
number of directions. Shearlets can also be constructed in dis-
crete domain realized by combination of the Laplacian pyramid (LP)
and directional filters, but still the lack of shift invariance problem
cannot be overcome. Easley et al. [27] proposed nonsubsampled
shearlet transform (NSST) that is realized by nonsubsampled Lapla-
cian pyramid (NSLP) and several shearing filters. The NSST also
provides the flexible directional selectivity and shift invariance
[27,28]. Based on the above concept, the present work combines
the NSST with improved nonlinear diffusion equations and thresh-
olding scheme for despeckling of the US medical images.

The paper is structured as follows. Section 2 presents the
methodologies used for the proposed method. Section 3 illustrates
the implementation steps of the proposed despeckling algorithm.
In Section 4, various experimental results are discussed and com-
pared with the several other methods in terms of the different
performance measures. Conclusions are drawn in Section 5.

2. Methodology

2.1. Anisotropic diffusion

Anisotropic diffusion is modeled by Perona and Malik for defin-
ing a scale space image [6]. This model is an extension of the heat
equation that is based on the partial differential equation (PDE). Let
s(x, y; t) is an image with coordinates (x, y) at time t, and then the
continuous anisotropic diffusion is defined as

∂s(x, y; t)
∂t

= div[g(x, y; t)∇s(x, y; t)] (1)

where div is the divergence operator, g is the diffusion coefficient
and � is a gradient operator with respect to space variables. The

diffusion model becomes isotropic, if g is a constant parameter.
When g is a function of directional parameters, the diffusion model
becomes anisotropic. Perona–Malik (PM) suggested the two well
known diffusion coefficients defined as,
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where f = | ∇ s| and the parameter � serves as a threshold of gradient
size. A smaller gradient is diffused, while positioning a larger gradi-
ent is treated as edges. Instead of having many computational and
theoretical properties, there is one serious problem with the diffu-
sion method. It is very sensitive to the noise which may  introduce
large oscillations of the gradient. Furthermore, the PM method can-
not differentiate between true edges and noises. Another problem
is the stair casing effects that arise around the smooth edges [29]. To
provide the solution of this problem, Catte et al. [30] proposed that
a Gaussian kernel G� is convolved with the images to reduce the
effect of noise and provide better estimation of the local gradient.
However, it is very sensitive to the number of diffusion iteration
by considering only the gradient information of the pixel. Nor-
mally, large gradient values are treated as edges, but sometimes the
important details along with edges available in the image may  have
low gradient magnitude [17]. Therefore, the gray level variance is
incorporated along with the gradient of the pixels to evaluate the
diffusion coefficients. In the PM method, the derivative term (�s) is
calculated using a template of four closest neighbors of a pixel (x,
y). This term can be evaluated more accurately by considering the
large number of the neighboring pixels within a template and the
corresponding algorithm improves the quality of the images. More-
over in this work, eight nearest neighboring pixels are used within
3 × 3 template to evaluate the gradient term and the adaptive gray
variance is also included along with the gradient to estimate the
diffusion coefficients.

2.2. Nonsubsampled shearlet transform

The NSST is an extension of the WT in multidimensional and
multidirectional case which combines the multiscale and direc-
tion analysis, separately. Firstly, the NSLP is used to decompose an
image into low and high-frequency components, and then direction
filtering is employed to get the different subbands and different
direction shearlet coefficients. Direction filtering is achieved using
the shear matrix which provides many more directions. The intro-
duction of the NSST is given as follows:

Consider a two-dimensional affine system with composite dila-
tions as [27,28]

ADS =
{
 j,k,m(x) = | det D|j/2 (SkDjx − m)  : j, k ∈ Z, m ∈ Z

2
}

(3)

where D refers to the anisotropic matrix, S denotes the shear matrix
and j, k and m are scale, direction and shift parameter, respectively.
The D and S are both 2 × 2 invertible matrices and |det S| = 1, the
elements of the system are called composite wavelet, if it forms a
Parseval frame for L2(R2), which is also an affine like system. For
any f ∈ L2(R2)∑

j,k,m

∣∣〈f,  j,k,m
〉∣∣2 = ||f ||2 (4)

The anisotropic dilation matrix

[
d 0
0 d1/2

]
or

[
d1/2 0
0 d

]
where

d > 0 controls the scale of shearlets, which ensures that the fre-
quency support of shearlets becomes increasingly stretched at finer
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