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a  b  s  t  r  a  c  t

In  this  paper,  a detailed  study  on the  possibility  and  significance  of performing  a  parametric  estimation
of  sample  entropy  (SampEn)  is  proposed.  SampEn  is  a non-linear  metric,  meant  to quantify  regularity
of  a  time  series.  It is  widely  employed  on  biomedical  signals,  especially  on heart  rate  variability.  Results
relevant  to  approximate  entropy,  a related  index,  are  also  reported.

An analytical  expression  for SampEn  of an autoregressive  (AR) model  is  derived  first.  Then  we study  the
feasibility  of  a parametric  estimation  of  SampEn  through  AR  models,  both  on  synthetic  and  real  series.
RR  series  of different  lengths  are  fitted  to an  AR model  and  then  expected  values  of SampEn  (SampEn�)
are  estimated.

Values of  SampEn,  computed  from  real beat-to-beat  interval  time  series  (obtained  from  72  normal
subjects  and  29 congestive  heart  failure  patients),  with  m  =  1  and  r =  0.2, are within  the  standard  range
of  SampEn� more  than  83%  (for  series  length  N = 75)  and 28%  (for  N  =  1500)  of the  cases.  Surrogate  data
have  been  employed  to  verify  if departures  from  Gaussianity  are  to  account  for  the  mismatch.

The  work  supports  the  finding  that when  numerical  and  parametric  estimates  of SampEn  agree,  SampEn
is mainly  influenced  by  linear  properties  of  the series.  A  disagreement,  on  the contrary,  might  point  those
cases  where  SampEn  is  truly  offering  new  information,  not  readily  available  with  traditional  temporal
and  spectral  parameters.

© 2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Heart rate variability (HRV) analysis is an important tool for
evaluating cardiac autonomic regulation [1]. About 30 years ago,
Pincus [2] developed a family of statistics, called approximate
entropy (ApEn), to measure series regularity. Many potential appli-
cations [3–5] of this method can be found in medical research
literature, in particular for detecting and testing the regularity of
HRV data. Successively, to address some manifest limitations of
ApEn (Pincus himself [6] reported ApEn to be a biased statistic),
Richman and Moorman [7] introduced Sample Entropy (SampEn),
which was also applied successfully to a wide range of problems
[8–10].

In the last 20 years [11], ApEn and SampEn had been the most
commonly used methods to quantify the regularity of biological
data. Both metrics estimate the differential entropy rate of the
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series [12,13]. However, SampEn: (i) is less prone to practical incon-
sistency, as it requires less lengthy series to converge to the final
value and (ii) is relatively less biased even for not-so-long series
[7]. Regarding the term “inconsistency”, Pincus [12] considered the
problem of assessing if a stochastic process A was more regular
than process B, by means of computing ApEn. He defined “consis-
tent” those processes for which ApEn of A was always larger (or
smaller) than ApEn of B, for any value of the parameters on which
the metric depends, (i.e., m and r, see Section 2.1). Here we  use the
term “practical consistency” to refer to the fact that ApEn (or Sam-
pEn) of series SA is larger than ApEn (or SampEn) of series SB for a
broad range of the parameters values.

ApEn and SampEn are extremely sensitive to data length (N),
particularly for very short data sets, i.e.,  N ≤ 200 [11]. Hence, their
estimates may  be far away from what expected using longer series.
Unfortunately, short series are generally used in real applications.
So, issues of convergence may  appear when estimating the regular-
ity of short data. A related problem arises in spectral analysis, where
long time stationary series are required to achieve lower variance
of the estimates. Hence, since the works of Bishop [14] and Kay and
Marple [15], parametric spectrum analysis is commonly performed
on short RR series [1] of 3–5 min, which are reasonably stationary.
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We  therefore verify in this work, if, in analogous circumstances, a
SampEn computation based on a parametric representation of the
series might convey new information.

The first step of a parametric approach is to select the most
appropriate family of model. For HRV signal, the most commonly
used models are moving average (MA), autoregressive (AR), and
autoregressive moving average (ARMA). Identification of AR mod-
els has been explored largely in the literature, it requires solving
simpler equations than those required for ARMA models, and AR
models are maximum-entropy models (among those sharing the
same autocorrelation function). Thus, AR models are mostly used
for HRV maximum-entropy spectral estimation.

In this work, we will first discuss the conditions under which a
parametric estimation of SampEn (and ApEn) is possible. We  will
limit our attention to linear AR models. Pincus [2] and then Lake
[13] already tackled the problem of deriving analytical formulas of
ApEn and SampEn for an AR process. Following the suggestion in
[2], in this work, we have first extended the analytical expression
of ApEn. Then, we have also derived an analytical expression for
SampEn and tested these predictions on simulated series and real
HRV data, obtained from Holter recordings.

2. Materials and methods

2.1. ApEn

ApEn measures the likelihood that runs of patterns that are close
remain close at the next incremental comparisons. The determi-
nation of this statistic is dependent on the prior selection of two
unknown parameters: the length (m) of compared runs, also called
templates, constructed from the series and a filtering threshold (r),
i.e., the tolerance of mismatch between the corresponding elements
of the templates.

Given a time series {u[i]|1 ≤ i ≤ N} of N data points, the calcula-
tion of ApEn [2] is as follows:

1. Form templates Vm[j] = {u[j], . . .,  u[j + m − 1]}  of size m,  for
1 ≤ j ≤ N − m + 1;

2. Define the distance between Vm[j] and Vm[i]: d(Vm[j], Vm[i]) =
max

0≤k≤m−1
|u[j + k] − u[i + k]|;

3. Let Am
j

be the number of templates Vm[i] such that d(Vm[j],
Vm[i]) ≤ r, where 1 ≤ i ≤ N − m + 1, and Cm

j
(r) = Am

j
/(N − m + 1);

4. Define �m(r) =
∑N−m+1

j=1 log Cm
j

(r)/(N − m + 1);
5. Increase m by 1 and repeat steps 1 to 4;
1 Finally, ApEn(m, r) = lim

N→∞
[�m(r) − �m+1(r)] and it’s corre-

sponding statistics, ApEn(m,  r, N) = �m(r) − �m+1(r), is estimated
for finite series.

2.2. SampEn

SampEn is similar but improved version of ApEn. The calculation
of SampEn [7] is performed by the following steps:

1. Let Am
j

be the number of templates Vm[i] such that d(Vm[j],
Vm[i]) ≤ r, where 1 ≤ i /= j ≤ N − m,  and Cm

j
(r) = Am

j
/(N − m − 1);

2. Let Am+1
j

be the number of templates Vm+1[i] such that d(Vm+1[j],

Vm+1[i]) ≤ r, where 1 ≤ i /= j ≤ N − m,  and Cm+1
j

(r) = Am+1
j

/(N −
m − 1);

3. Define Am(r) =
∑N−m

j=1 Cm
j

(r)/(N − m)  and Am+1(r) =∑N−m
j=1 Cm+1

j
(r)/(N − m), then

4. SampEn(m,  r) = lim
N→∞

[log Am(r) − log Am+1(r)] and, for a finite

series, SampEn(m,  r, N) = log Am(r) − log Am+1(r).

2.3. AR process

An AR process of order M can be expressed as

x[n] = −
M∑

i=1

aix[n − i] + w[n]

where ai are real coefficients and w[n] is a white Gaussian noise
(WGN) with mean zero and variance �2

w . The parameters of the
model and the autocovariance function values �k, are linked by the
Yule–Walker’s equations⎛
⎜⎜⎜⎜⎜⎜⎝

1 a1 a2 · · · aM

a1 1 + a2 a3 · · · 0

a2 a1 + a3 1 + a4 · · · 0

· · · · · · · · · · · · · · ·
aM aM−1 aM−2 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

�0

�1

�2

· · ·
�M

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

�2
w

0

0

·  · ·
0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1)

The m consecutive values, Xm[n] = {x[n], . . .,  x[n + m − 1]},  are
multivariate normal on R

m, with Normal joint probability density

f (Xm) = N(0,  �m) = exp(−XT
m�−1

m Xm/2)/[(2�)m det(�m)]
1/2

and
Toeplitz covariance matrix

�m =

⎛
⎜⎜⎜⎝

�0 �1 · · · �m−1

�1 �0 · · · �m−2

· · · · · · · · · · · ·
�m−1 �m−2 · · · �0

⎞
⎟⎟⎟⎠ .

The values �m, for m ≤ M,  are defined by Eq. (1). When m > M, further
elements in �m are still dictated by the Yule–Walker’s equation
�k = −∑M

i=1ai�k−i.
Denoting �k = �k/�0 the autocorrelation coefficient, the variance

�2
y = �0 of the series generated by the AR process is

�2
y = �2

w(1 + a1�1 + · · · + aM�M)−1 = �2
wc, (2)

where c = (1 + a1�1 + · · · + aM�M)−1.

2.4. ApEn and SampEn theoretical values for N→ ∞

The analytical expression of ApEn(m = 1, r) for a stochastic (thus
also for an AR) process was  given by Pincus in [2]. Let

Qm =
∫ x[m]+r

x[m]−r

· · ·
∫ x[1]+r

x[1]−r

f (	m)d
1· · ·d
m

be the probability that the values Xm lie within the hypercube of
side 2r, where f(Xm) is the multivariate probability density of the
ergodic stochastic process. Then

ApEnTH(1,  r) =
∫ ∫

R2
f(X2) log

(
Q1

Q2

)
dx[1]dx[2].

This equation can be extended to derive a general analytical expres-
sion of ApEn(m,  r) for any m as

ApEnTH(m, r) =
∫
Rm+1

· · ·
∫

f(Xm+1) log
(

Qm

Qm+1

)
dXm+1. (3)

where dXm = dx[1]dx[2] · · · dx[m],
Following a similar approach, a theoretical value for SampEn of

an AR process can be derived from the definition. In fact, the prob-
ability of matching two  templates of size m within error tolerance r
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