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a  b  s  t  r  a  c  t

Recently,  several  new  beamformers  have  been  introduced  for  reconstruction  and  localization  of neural
sources  from  EEG  and  MEG.  Although  studies  have  compared  the  accuracy  of beamformers  for  localization
of  strong  sources  in  the  brain,  a comparison  of new  and  conventional  beamformers  for  time-course
reconstruction  of  a desired  source  has  not  been  previously  undertaken.  In this  study,  8 beamformers
were  examined  with  respect  to several  parameters,  including  variations  in  depth,  orientation,  magnitude,
and  frequency  of  the  simulated  source  to determine  their  (i)  effectiveness  at time-course  reconstruction
of  the  sources,  and  (ii) stability  of  their  performances  with  respect  to the  input  changes.  The  spatial
and  directional  pass-bands  of  the  beamformers  were  estimated  via  simulated  and  real  EEG sources  to
determine  spatial  resolution.  White-noise  spatial  maps  of  the  beamformers  were  calculated  to show
which  beamformers  have  a location  bias.  Simulated  EEG  data  were  produced  by  projection  via forward
head  modelling  of simulated  sources  onto  scalp  electrodes,  then  superimposed  on  real  background  EEG.
Real EEG  was  recorded  from  a patient  with essential  tremor  and  deep  brain  implanted  electrodes.  Gain
–  the  ratio  of  SNR  of  the  reconstructed  time-course  to the  input  SNR  – was  the primary  measure  of
performance  of  the  beamformers.

Overall,  minimum-variance  beamformers  had  higher  Gains  and  superior  spatial  resolution  to  those  of
the minimum-norm  beamformers,  although  their  performance  was  more  sensitive  to  changes  in  magni-
tude,  depth,  and  frequency  of  the  simulated  source.  White-noise  spatial  maps  showed  that  several,  but
not all,  beamformers  have  an  undesirable  location  bias.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Electroencephalography (EEG) and magnetoencephalography
(MEG) are noninvasive tools for functional brain imaging using
scalp recording. Compared with other common tools for brain
functional imaging such as functional magnetic resonance imaging
(fMRI) and positron emission tomography (PET), which mea-
sure relatively slow changes in blood flow and metabolic activity

∗ Corresponding author at: New Zealand Brain Research Institute, 66 Stewart
Street, Christchurch 8011, New Zealand. Tel.: +64 33786093.

E-mail addresses: jonya247@student.otago.ac.nz, jacob jonmo@yahoo.ca
(Y. Jonmohamadi).

which are indirect markers of brain electrical activity, EEG and
MEG  measure brain electrical activity with millisecond temporal
resolution. This advantage provides opportunities for studies of
highly dynamic and transient neural activity. In recent years, brain
source imaging and reconstruction from continuous and single-
trial EEG/MEG data have received increased attention aimed at
improving the understanding of rapidly changing brain dynamics
[1–3] and using this for improved real-time brain monitoring, brain
computer interface (BCI), and neurofeedback [4–6]. In contrast, EEG
and MEG  have poor spatial resolution relative to fMRI and PET.
This is, in part, due to EEG and MEG  mostly reflecting the electri-
cal activity of the cortical grey matter, with deeper brain activities
attenuated and contributing considerably less to the EEG/MEG sig-
nals. The beamformer provides a versatile form of spatial filtering,
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suitable for processing data from an array of sensors [7]. Beam-
formers were originally applied in array signal processing including
sonar, radar, and seismic exploration [8]. The basic principle of
beamformer design is to allow the neuronal signal of interest to
pass through in a certain source location and orientation, called
a pass-band, while suppressing noise or unwanted signal in other
locations or orientations, called a stop-band [9]. A major limita-
tion of beamformers is that they cannot properly reconstruct two
spatially separate but temporally-correlated sources [9–11]; for
example, they cancel each other when spatially far from each other
or merge when they are spatially placed close to each other [9].

In recent years, new beamformers have been introduced for
brain source localization and signal reconstruction from EEG and
MEG  [7,9,12,13]. The performances of these beamformers have
mostly been evaluated in terms of accuracy for source localization
of strong electric/magnetic signals, such as epileptogenic spikes
[10,14], auditory evoked potentials [7,13,15], and median-nerve
evoked potentials [9]. Aside from source localization, the applica-
tion of beamformers to signal reconstruction of predefined regions
of interest (ROI) in the brain is gaining increased attention in neu-
roimaging laboratories and is a common process in applications of
EEG and MEG  [16]. Examples of such ROIs are the motor cortex
for BCI [17], intracerebral current flow for neurofeedback [16], or
any region in the brain found to have consistent changes in activity
via functional imaging techniques such as fMRI or PET. However,
a comparison of several new and conventional beamformers for
time-course reconstruction of a desired source has not been previ-
ously undertaken.

Beamformers applied to EEG or MEG  fall into two  categories:
(A) scalar beamformers, which reconstruct the source time-course
via a single output, and (B) vector beamformers which, reconstruct
the source time-course in 3 orthogonal directions. For scalar beam-
formers, the orientation of the brain source can be estimated via
techniques such as grid search [18,19], whereas vector beamform-
ers do not require orientation of brain sources as they reconstruct
the source time-series in 3 orthogonal time-courses. There are two
methods for implementation of vector beamformers which are dis-
cussed in [20]. In the first method, the vector beamformer is a single
beamformer with 3 orthogonal outputs, as applied in [10]. In the
second implementation, the vector beamformer is made of 3 scalar
beamformers in the 3 orthogonal directions as in [9,21].

In the current study, we investigated the performance of
8 beamformers: (1) minimum-variance (MV) (also known as
distortionless minimum-variance [12]), (2) weight-normalized
minimum-variance (WNMV) [12]) (also known as Borgiotti–Kaplan
[7,22], (3) standardized minimum-variance (SMV) [12], (4)
eigenspace extension of the minimum-variance (ESMV) [23],
(5) higher-order covariance matrix of minimum-variance (HOC)
[9], (6) generalized sidelobe canceller form of quiescent beam-
former (GSC) [24], (7) standardized low-resolution electromagnetic
tomography (sLORETA) [25], and (8) array-gain constraint
minimum-norm with recursively updated Gram matrix (AGMN-
RUG) [13]. Gain, defined as the ratio of the input signal-to-noise
ratio (SNR) to that of reconstructed time-course SNR, was used
to quantify the performance of the beamformers in the ROI,
with respect to changes in source parameters of depth, orienta-
tion, magnitude, and frequency. Spatial and directional pass-bands
were provided to show the spatial resolution of the beamformers.
White-noise spatial maps of the beamformers were obtained by
back-projection of the white noise to the source-space via beam-
formers to determine which beamformers have a location bias. For
the most part, the scalar beamformers were applied to determine
the performance of the beamformers with respect to changes in the
input parameters and the spatial resolution.

Throughout this paper, plain italics indicate scalars, lower-case
boldface italics indicate vectors, and upper-case boldface italics

indicate matrices. Subscript b refers to assumed location or ori-
entation of the source and subscript d refers to actual location or
orientation of the source. The Frobenius norm was  used to obtain
the norm of the matrices and vectors.

2. Beamformer algorithms

The reconstructed source time-series ŝ(t, rb, qb) from the EEG
for a scalar beamformer is

ŝ(t, rb, qb) = wT (rb, qb)b(t), (1)

where rb = [rbx, rby, rbz]T (mm)  and qb = [qbx, qby, qbz]T are the
assumed source location and orientation respectively for calcula-
tion of the beamformer weight vector, ‖ qb ‖ =1, w(rb, qb) is the
weight vector for the scalar beamformer, and b(t) = [b1(t), b2(t),
. . .,  bM(t)]T is the measured EEG data on M electrodes at time t.
Each beamformer has its own formulation of w(rb, qb).

For a vector beamformer the reconstructed time-course can be
written as

ŝ(t, rb) = WT (rb)b(t). (2)

In the above implementation, the vector beamformer is a single
beamformer with 3 orthogonal outputs, as shown in [10]. A second
implementation is shown in [9]:

ŝ�(t, rb) = wT
�(rb)b(t), � = x, y, z. (3)

Similar to [20], we  call the first implementation a 3-D vec-
tor beamformer and the second implementation a 3-scalar vector
beamformer.

Spatial filters can also be divided into two main families:
minimum-variance and minimum-norm based spatial filters. In
this study the MV,  WNMV,  SMV, HOC and ESMV beamform-
ers belong to the minimum-variance family of spatial filters
whereas GSC, sLORETA, and AGMN-RUG beamformers belong to the
minimum-norm family of spatial filters. The minimum-variance
spatial filters seek an adaptive solution for the minimization of
the reconstructed source power. For the scalar beamformers, and
without the loss of generality, this can be expressed as

w(rb, qb) = arg minw(rb,qb)(w
T (rb, qb)Cw(rb, qb)) (4)

subject to

wT (rb, qb)l(rb, qb) = 1 for MV, ESMV, and HOC,

wT (rb, qb)w(rb, qb) = 1 for WNMV,

wT (rb, qb)l(rb, qb) = (lT (rb, qb)C−1l(rb, qb))
1/2

for SMV,

(5)

and

l(rb, qb) = L(rb)qb. (6)

L( rb) = [ lx( rb), ly( rb), lz( rb)] mm is M × 3 lead-field matrix which
gives the sensitivities of M EEG sensors for an assumed source loca-
tion at rb and C is the covariance matrix of EEG channels

C = 〈b(t)bT (t)〉, (7)

where 〈 . . . 〉 is the ensemble average. Since the minimum-variance
beamformers require the inverse of the covariance matrix C−1, a
problem may  arise when the C is not full rank. Brookes et al. [26]
have suggested using a long window (i.e., as long as possible) of sen-
sor data for calculation of C , which helps C retain its full rank and
obtain a better spatial resolution. However, using a long window
of sensor data increases the risk of including the artefacts which
happen frequently during recordings. Alternatively, when the use
of a long window is not possible or the input SNR is high then C
will not be a full rank matrix and the regularized inverse is sug-
gested ( C + � I)−1 instead of C−1, where I is the unitary matrix,
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