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a  b  s  t  r  a  c  t

Respiratory  effort  has been  widely  used  for  objective  analysis  of  human  sleep  during  bedtime.  Several
features  extracted  from  respiratory  effort  signal  have  succeeded  in  automated  sleep  stage  classification
throughout  the  night  such  as  variability  of respiratory  frequency,  spectral  powers  in different  frequency
bands,  respiratory  regularity  and  self-similarity.  In  regard  to the  respiratory  amplitude,  it has  been  found
that  the  respiratory  depth  is  more  irregular  and  the  tidal volume  is smaller  during  rapid-eye-movement
(REM) sleep  than  during  non-REM  (NREM)  sleep.  However,  these  physiological  properties  have  not  been
explicitly  elaborated  for  sleep  stage  classification.  By  analyzing  the  respiratory  effort  amplitude,  we pro-
pose a set  of  12 novel  features  that  should  reflect  respiratory  depth  and  volume,  respectively.  They  are
expected  to  help  classify  sleep  stages.  Experiments  were  conducted  with  a  data  set of 48 sleepers  using  a
linear discriminant  (LD)  classifier  and  classification  performance  was  evaluated  by overall  accuracy  and
Cohen’s  Kappa  coefficient  of  agreement.  Cross  validations  (10-fold)  show  that  adding  the  new  features
into  the  existing  feature  set  achieved  significantly  improved  results  in classifying  wake,  REM  sleep,  light
sleep and  deep  sleep  (Kappa  of 0.38  and  accuracy  of  63.8%)  and  in classifying  wake,  REM  sleep  and  NREM
sleep  (Kappa  of 0.45  and  accuracy  of  76.2%).  In particular,  the  incorporation  of  these  new  features  can  help
improve  deep  sleep  detection  to more  extent  (with  a Kappa  coefficient  increasing  from  0.33  to 0.43).  We
also  revealed  that calibrating  the  respiratory  effort  signals  by  means  of body  movements  and  performing
subject-specific  feature  normalization  can ultimately  yield  enhanced  classification  performance.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

According to the rules presented by Rechtschaffen and Kales
(the R&K rules) [1], human sleep is comprised of wake, rapid-eye-
movement (REM) sleep and four non-REM (NREM) sleep stages
S1–S4. S1 and S2 are usually grouped as “light sleep” and S3 and S4
correspond to slow-wave sleep (SWS) or “deep sleep” [2]. The gold
standard for nocturnal sleep assessment is overnight polysomnog-
raphy (PSG) which is typically collected in a sleep laboratory. With
PSG, sleep stage is manually scored on each 30-s epoch throughout
the night by trained sleep experts, forming a sleep hypnogram
[1]. PSG recordings usually contain multiple bio-signals such
as electroencephalography (EEG), electrocardiography (ECG),
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electrooculography (EOG), electromyography (EMG), respiratory
effort, and blood oxygen saturation.

Respiratory information has been widely used for objectively
assessing human nocturnal sleep [3–5]. Detecting sleep stages
overnight is beneficial to the interpretation of sleep architecture
or monitoring of sleep-related disorders [6,7]. Cardiorespiratory-
based automated sleep stage classification has been increasingly
studied in recent years [8–12]. Some of those studies only made
use of respiratory activity because, when comparing with it car-
diac activity is relatively more difficult to be captured reliably in an
unobtrusive manner [10,11]. For respiratory activity, in comparison
with the breathing ventilation acquired with traditional devices
such as nasal prongs or face mask [13], respiratory effort can be
obtained in an easier and more noninvasive or unobtrusive way,
e.g., using a respiratory inductance plethysmography (RIP) sensor
[14], an infrared (IR) camera [15], or a pressure sensitive bed-sheet
[16].

Several parameters have been derived from respiratory effort
signals for sleep analysis including respiratory frequency, powers of
different respiratory spectral bands [8], respiratory self-similarity
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[11], regularity [17] etc. These parameters are usually called “fea-
tures” in the tasks of epoch-by-epoch sleep stage classification. In
addition, it has been reported that the respiratory amplitude (e.g.,
depth and volume) differs between sleep stages [4]. For instance,
the “respiratory depth” is more regular and the tidal volume,
minute ventilation, and inspiratory flow rate are significantly lower
during REM sleep than during NREM sleep (particularly during
deep sleep) [18,19]. To the authors’ knowledge, these character-
istics that express different physiological properties across sleep
stages have not been explicitly elaborated and quantified for appli-
cations of sleep stage classification. We  therefore exploit these
characteristics by analyzing respiratory effort signal envelope and
area. Features quantifying these characteristics are motivated to
be designed which are expected to in turn help separate different
sleep stages.

It is assumed that the information about respiratory depth or
volume is obtainable from the respiratory effort signal. For instance,
the signal (upper and lower) envelopes and area should correspond
to respiratory depth and volume, respectively. In fact, respiratory
effort has often been used as a surrogate of tidal volume since it
is obtained by measuring motions of rib cage or abdominal with,
e.g., RIP [14]. However, Whyte et al. [20] argued that this assump-
tion does not always hold, particularly when a sleeper changes
his/her posture along with body movements during sleep. This is
because the respiratory effort amplitude might be affected by body
movements as the sensor position may  shift and/or the sensor may
be stretched. This will cause an uneven comparison of the signal
amplitude before and after body movements, yielding errors when
computing the feature values. In order to provide a more accurate
estimate of respiratory depth and volume from respiratory effort
signal, we must calibrate the signal by means of body movements.
They can be quantified by analyzing the artifacts of respiratory
effort signal (often inline with body movements) using a dynamic
time warping (DTW)-based method [11]. DTW is a signal-matching
algorithm that quantifies an optimal non-linear alignment between
two time series allowing scaling and offset [21]. Our previous work
[11] has proposed a DTW measure to effectively capture body
motion artifacts by measuring self-similarity of respiratory effort.
This measure has been successfully used as a feature for classifying
sleep and wake states in that work. Therefore, we simply adopted
this measure to detect motion artifacts modulated by body move-
ments in respiratory effort signals. Using the DTW-based method
enables the exclusion of an additional sensor modality (e.g., actig-
raphy) specifically used for detecting body movements.

The address of this paper is exclusively on investigating a set
of novel features that can characterize respiratory amplitude in
different aspects with the ultimate goal of improving sleep stage
classification performance. Previous studies have shown that lin-
ear discriminant (LD) is an appropriate algorithm in sleep stage
classification [6,8,22]. Likewise, we simply adopted an LD classi-
fier. Preliminary results of this work in classifying REM and NREM
sleep have been previously published [23].

2. Materials and methods

2.1. Subjects and data

Data of 48 healthy subjects (21 males and 27 females) in the
SIESTA project (supported by European Commission) [24] were
included in our data set. The subjects had a Pittsburgh Sleep
Quality Index (PSQI) of no more than 5 and met several criteria
(no shift work, no depressive symptoms, usual bedtime before
midnight, etc.). All the subjects signed an informed consent form
prior to the study, documented their sleep habits over 14 nights,
and underwent overnight PSG study for two consecutive nights (on

Table 1
Summary of subject demographics and some sleep statistics (N = 48).

Parameter Mean ± SD Range

Sex 21 males and 27 females
Age (years) 41.3 ± 16.1 20–83
BMIa (kg m−2) 23.6 ± 2.9 19.1–31.3
TRTb (h) 7.8 ± 0.4 6.6–8.6
Wake, W (%) 12.9 ± 6.1 1.2–24.5
REM sleep, R (%) 19.0 ± 3.3 15.3–26.5
NREM sleep, N (%) 68.1 ± 4.9 56.1–76.3
Light sleep, L (%) 53.6 ± 5.5 42.7–66.7
Deep sleep, D (%) 14.5 ± 4.8 5.3–28.5

a Body mass index.
b Total recording time.

day 7 and day 8) in sleep laboratories. The PSG recordings collected
on day 7 were used for analyses, from which the respiratory
effort signals (sampling rate of 10 Hz) were recorded with thoracic
inductance plethysmography.

Sleep stages were manually scored on 30-s epochs as wake, REM
sleep, or one of the NREM sleep stages by sleep clinicians based on
the R&K rules. For sleep stage classification epochs were labeled as
four classes W (wake), R (REM sleep), L (light sleep), and D (deep
sleep), or three classes W,  R, and N (NREM sleep).

From the data used in this study the subject demographics and
some sleep statistics [mean ± standard deviation (SD) and range]
are summarized in Table 1.

2.2. Signal preprocessing

The raw respiratory effort signals of all subjects were prepro-
cessed before feature extraction. They were filtered with a 10th
order Butterworth low-pass filter with a cut-off frequency of 0.6 Hz
for the purpose of eliminating high frequency noise. Afterwards the
baseline was  removed by subtracting the median peak-to-trough
amplitude. To locate the peaks and troughs, we identified the tur-
ning points simply based on sign change of signal slope and then
corrected the falsely detected ‘dubious’ peaks and troughs (1) with
too short intervals between peak and trough pairs where the sum
of two  successive intervals is less than the median of all inter-
vals over the entire recording and (2) with two small amplitudes
where the peak-to-trough difference is smaller than 15% of the
median of the entire respiratory effort signal. These methods were
validated by comparing automatically detected results with man-
ually annotated peaks and troughs and an accuracy of ∼98% was
achieved.

2.3. Existing respiratory features

A pool of 14 existing features extracted from the respiratory
effort signal has been used in previous studies for sleep stage clas-
sification. In the time domain, the mean and SD of breath lengths
(Lm and Lsd) and the mean and SD of breath-by-breath correla-
tions (Cm and Csd) were calculated [6]. In the frequency domain, we
extracted features based on the respiratory effort spectrum for each
epoch where the spectrum was estimated using a short time Fourier
transform (STFT) with a Hanning window. From the spectrum the
dominant frequency (Fr) in the range of 0.05–0.5 Hz (estimated as
the respiratory frequency) and the logarithm of its power (Fp) were
obtained [6]. We also took the logarithm of the spectral power
in the very low frequency band between 0.01 and 0.05 Hz (VLF),
low frequency band between 0.05 and 0.15 Hz (LF), and high fre-
quency band from 0.15 to 0.5 Hz (HF) and the ratio between LF
and HF spectral powers (LF/HF) [6,8]. Furthermore the standard
deviation of respiratory frequency over 5 epochs (Fsd) was com-
puted [8]. Non-linear features consist of self-similarity measured
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