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a  b  s  t  r  a  c  t

Due  to  its  major  safety  applications,  including  safe  driving,  mental  fatigue  estimation  is  a  rapidly grow-
ing  research  topic  in the engineering  field.  Most  current  mental  fatigue  monitoring  systems  analyze
brain  activity  through  electro-encephalography  (EEG).  Yet  eye  blink  analysis  can  also  be  added  to  help
characterize  fatigue  states.  It usually  requires  the  use  of additional  devices,  such  as EOG electrodes,
uncomfortable  to wear,  or more  expensive  eye  trackers.  However,  in  this  article,  a  method  is proposed
to  evaluate  eye  blink  parameters  using  frontal  EEG  electrodes  only.  EEG  signals,  which  are  generally
corrupted  by  ocular  artifacts,  are  decomposed  into  sources  by means  of  a source  separation  algorithm.
Sources  are  then  automatically  classified  into  ocular  or non-ocular  sources  using  temporal,  spatial  and
frequency  features.  The  selected  ocular  source  is back  propagated  in the  signal  space  and  used  to  localize
blinks  by  means  of an adaptive  threshold,  and  then  to  characterize  detected  blinks.  The method,  validated
on  11  different  subjects,  does  not  require  any  prior  tuning  when  applied  to  a  new  subject,  which  makes  it
subject-independent.  The  vertical  EOG  signal  was  recorded  during  an experiment  lasting  90 min  in  which
the  participants’  mental  fatigue  increased.  The  blinks  extracted  from  this  signal  were  compared  to those
extracted  using  frontal  EEG  electrodes.  Very  good  performances  were  obtained  with  a  true  detection  rate
of 89%  and  a false  alarm  rate  of  3%. The  correlation  between  the  blink  parameters  extracted  from  both
recording  modalities  was  0.81  in  average.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

During the realization of monotonous and repetitive tasks, men-
tal fatigue, or reduced alertness, arises with growing time-on-task
(TOT). This is a gradual and cumulative process that leads to shal-
low or even impaired information processing and can therefore
result in a significant decrease in performance [13]. It can even pro-
duce major, life-threatening accidents when operators are driving,
dealing with heavy machinery or carrying out security procedures.

Several fatigue level physiological markers have been used by
monitoring systems. Amongst them are indices of cerebral activity,
such as band power features recorded via electro-encephalography
(EEG), which are early indicators of fatigue. Indices of ocular activ-
ity, such as spontaneous eye blink parameters, recorded via (near)
infra-red eye-tracking systems or electro-oculography (EOG) are
also useful for characterizing mental fatigue or drowsiness states
[17]. Especially, eye blinks are well known indicators of arousal
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and cognitive state [19,13,2,6]. Indeed, their frequency, duration,
amplitude, closing or opening duration and speed parameters are
subject to fluctuations depending on the operator’s mental fatigue
level [9,20]. All those measures of eye blink characteristics can be
performed using EOG, a technique that records variations in electric
potential that arise from eye movements [5,8]. In order to record
vertical eye movements, such as eye blinks, two  electrodes can
be placed, respectively, above and below one eye. Although very
efficient, this technique raises some difficulties for the subjects.
Indeed, the use of sensors placed over the face can reduce the opera-
tors’ visual field, which can therefore lead to poorer performances.
Moreover, EOG electrodes can be uncomfortable to wear, and it
seems unreasonable to expect people to wear them on a daily basis.
Another solution to monitor eye blink activity is the use of an eye
tracker. However this requires purchasing the device. This can be
a costly solution if several operators were to be equipped with a
mental fatigue monitoring device.

The solution that is proposed in this paper is the use of scalp
electrodes, namely EEG electrodes, to record at once both cere-
bral and ocular activities, without the need for any other device.
A new method for eye blink detection and characterization that
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could be applied for mental fatigue monitoring is proposed. This
method is based on signal recorded from frontal and fronto-
central EEG electrodes, and includes signal processing steps such as
source separation, source classification, reconstruction of the ocu-
lar signal in the sensor space, and extraction of several eye blink
parameters.

Since most EEG studies only concentrate on cerebral activity,
they usually consider EEG-recorded ocular activity as noise. In con-
sequence, a huge proportion of the EEG literature focuses on how
to rid EEG data of those artifacts [12,14]. The earliest publications
concerned off-line analyses, but there is an increasing number of
published works relating to online denoising systems [15], and
even dedicated chips [22]. Several authors perform source sep-
aration in order to denoise their EEG data. Thus, [23] carry out
their source separation step using the Second-Order Blind Iden-
tification algorithm (SOBI; [3]), and then extract four features on
10-s time segments to classify sources into cerebral and artifac-
tual ones using Support Vector Machines (SVMs). However, some of
their features are computed with the use of a reference EOG signal.
Therefore, they propose a method which is not completely EEG-
based. As for [11], they perform their source separation using an
independent component analysis (ICA). Then, they decide for each
3-s time segment whether a source is artifactual or not using the
number of maxima and thresholds. Their method includes normal-
ization before the segmentation step, which seems unrealistic in a
real-time application. Lastly, [25,26] also perform an ICA. However
they use only one feature on 5-s time segments, namely entropy,
to perform their identification of artifactual sources.

On top of their specific limitations, all those methods are focused
on an EEG denoising application. However, in this paper’s appli-
cation, removing ocular activity from the EEG data is considered
a loss of information. A few authors have published work related
to actually using this information. Hence, [21] detect the presence
of eye blinks in the EEG data using SVM in order to allow sub-
jects to control a wheelchair. Here, the blinks are just detected,
but not characterized. Along the same lines, [16] detect horizon-
tal eye movements from electrodes placed on the forehead in
order to pilot a robot. Ref. [24] estimate glance from EEG to allow
cursor control by avoiding high-pass frequency filtering which is
usually performed on the EOG signal to remove the long-term
drift. Therefore, they also use generally removed ocular informa-
tion present in the EEG signal. Thus, those articles introduce work
aimed at using EEG-recorded ocular activity for motor-control
applications.

The ocular activity can also be used to monitor an operator’s
mental state, such as its mental fatigue level. Still, to the best of our
knowledge, only two research teams have studied the use of ocu-
lar activity recorded on the scalp for mental state monitoring. Ref.
[7] have recently published work that includes measuring the eye
blink rate computed from EEG via an ICA, in order to estimate sev-
eral mental states. However, they do not provide the reader with
their method, and they only perform a basic blink rate extraction
and do not characterize the blinks. Ref. [1] propose a system placed
on the forehead that allows for both cerebral and ocular activities’
measurement. This system is intended to monitor one’s drowsi-
ness by detecting eye blinks along with power spectral measures.
However, they do not detail their method as for blink character-
ization and parameters exploitation, and their system includes a
driven right leg (DRL) circuit, which is not realistic for a daily living
application.

In this paper, a new method to extract and characterize blink
activity from EEG signals usually used to monitor cerebral activity
is first detailed. The validation process used to evaluate the per-
formances is then presented. And finally, the results obtained on
data from 11 different subjects undergoing an experiment where
mental fatigue increases are analyzed and discussed.

2. Blink detection and characterization method

In order to detect and characterize the eye blinks using only the
EEG signal, several processing steps are performed. First, the signal
is split into epochs, from which a source separation step is per-
formed and a supervised classifier is used to identify ocular sources.
Then, the data are back projected in the sensor space in order to exe-
cute blink segmentation. Lastly, blink characterization is executed.
The operational mode for blink detection is illustrated in Fig. 1.

2.1. Source separation

The EEG signal at time instant t is often written as the instanta-
neous linear combination of source signals:

x(t) =
Ns∑

i=1

aisi(t) + n(t) = As(t) + n(t) (1)

where Ns is the number of sources, that coincides usually with
the number of electrodes Ns = Ne, so the unknown mixing matrix
A is square. n is some additive noise. By considering an epoch
of time, (1) can be written in matrix form using X = AS + N where
X = [x1. . .xNe ]T is a Ne × Nt EEG data matrix and S = [s1. . .sNe ]T is a
Ne × Nt source data matrix. The ith column of A, denoted ai, is the
spatial pattern of the ith source. The sources are estimated using
the relation:

s(t) = WT x(t) (2)

where WT A ≈ INe .
The ith column of W,  denoted wi, is called a spatial filter: the

ith source waveform is then extracted as a linear combination of
electrode channels.

In order to perform the source separation step, we selected a
common second-order statistic algorithm, the SOBI algorithm, for
its robustness to outliers and its efficiency on short time intervals
[10]. It is applied on 20-s epochs of EEG signal recorded from 11
frontal electrodes, with a sampling period Te. The signals are ini-
tially filtered in the (0.5–40 Hz) band using a fifth order Butterworth
filter. The SOBI algorithm assumes stationary and uncorrelated
sources for any time lag. It is solved by approximate joint diago-
nalization. In this work, it is computed using 10 time lags [4].

2.2. Ocular source identification

A source is supposed to originate from ocular activity (OA) or not
(NOA). Each source is classified into OA or NOA  using a maximum
likelihood classifier. Six features are extracted on each source.

The NOA sources (i.e., EEG sources) are supposed to be Gauss-
ian, to affect all electrodes in a quite homogenous manner and to
have a small variance, whereas the OA ones are assumed to be non-
Gaussian, to greatly affect frontal electrodes and to present a high
variance. Thus, for each source, si with epochs that last for 20 s, the
following set of Nf = 6 temporal, spatial and frequency features is
computed:

(1) Kurtosis:

fi[1] = k4(si)

[k2(si)]
2

(3)

k˛(y) = 1
Nt

Nt∑

n=1

(y[n] − m(y))˛

where m(y) designates the temporal sample mean.
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