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a  b  s  t  r  a  c  t

In  this  paper,  we  study  various  lossless  compression  techniques  for electroencephalograph  (EEG) signals.
We discuss  a computationally  simple  pre-processing  technique,  where  EEG  signal  is arranged  in  the
form of a  matrix  (2-D)  before  compression.  We  discuss  a  two-stage  coder  to compress  the  EEG matrix,
with  a lossy  coding  layer  (SPIHT)  and  residual  coding  layer  (arithmetic  coding).  This  coder  is optimally
tuned  to  utilize  the  source  memory  and  the  i.i.d.  nature  of  the  residual.  We  also  investigate  and  compare
EEG  compression  with  other  schemes  such  as  JPEG2000  image  compression  standard,  predictive  coding
based  shorten,  and  simple  entropy  coding.  The  compression  algorithms  are  tested  with  University  of
Bonn  database  and  Physiobank  Motor/Mental  Imagery  database.  2-D based  compression  schemes  yielded
higher lossless  compression  compared  to the  standard  vector-based  compression,  predictive  and  entropy
coding  schemes.  The  use  of  pre-processing  technique  resulted  in  6%  improvement,  and  the  two-stage
coder  yielded  a further  improvement  of  3% in compression  performance.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Electroencephalogram (EEG) is a record of electrical activity
of the brain. EEG provides a large-scale and robust measure of
the dynamic activity of brain; it has high temporal resolution but
poor spatial resolution. Though, EEG is considered as a valuable
source for understanding neuronal functions and neurophysio-
logical properties of human brain. EEG is used successfully for
diagnosing brain disorders (e.g., Alzheimer’s disease [1]), in sleep
studies, monitoring depth of anesthesia, and in cognitive studies
[2].

Various clinical applications require acquisition, archiving,
transmission and automatic processing of EEG over an extended
duration (several days, weeks, or potentially even months). Such
long-term recordings results in massive EEG data sets. For instance,
accurate inverse modeling demands the use of higher number of
EEG channels (e.g., 256), and higher sampling rate may  be required
(several kHz in the case of cortical EEG; several hundred Hz for scalp
EEG), to capture spikes and high-frequency oscillations in the EEG.
On the other hand, the number of patients with neurological disor-
ders is increasing, and hence this put forward the need for efficient
and flexible compression techniques.

Signal compression is achieved by exploiting correlations in the
source. The compressibility of the signal is dependant on the ampli-
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tude distribution of the signal and the power spectrum of the signal.
For instance, if a single value dominates the amplitude distribution,
or a single frequency dominates the power spectrum, then the sig-
nal is highly compressible. The amplitude distribution and spectral
distribution of a segment of EEG is shown in Fig. 1.

Usually, the amplitude of EEG signal is very low (few �V), and
the acquisition systems amplify the signal more than a million
times. This leads to amplification of noise as well. This inherent
noise makes the compression difficult, and poses a hindrance in
achieving good compression performance.

There are three types of correlations in a multi-channel EEG
signal

1. Intra-channel correlation among the adjacent samples of the sig-
nal from the same channel.

2. Inter-channel correlation among the samples acquired at the
same instant of time over all the channels.

3. The brain rhythms (e.g., alpha-rhythm) also introduce correla-
tions in EEG, but they fluctuate with time.

We briefly review the EEG compression literature in the follow-
ing groups: (i) predictive schemes, (ii) transform based schemes,
(iii) multichannel schemes.

1.1. Predictive schemes

EEG signal is often modeled by an auto-regressive (AR) pro-
cess. AR predictor predicts the current sample as a weighted sum
of previous samples. To achieve perfect reconstruction, the resid-
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Fig. 1. Compressibility of EEG. (a) EEG signal, (b) amplitude spectra, and (c) power
spectra of the signal shown in (a).

ual signal is transmitted together with the predictor coefficients.
Lossless predictive schemes directly code the residuals, whereas
lossy predictive schemes threshold and quantize the residuals to
improve compression rate (at the cost of increased error). Vari-
ous prediction models have been developed: this include linear AR
model [3,4], recursive-least-squares predictor [5],  adaptive neural
networks [6] and models based on chaos theory [7].  Refinements
such as context-based bias cancellation [4],  and adaptive error
modeling schemes [8,9] further improve the performance.

1.2. Transform based schemes

Consider a sequence of N signal samples X, as a N-dimensional
vector. A compact representation Y in the transform domain is
obtained by orthogonal transformation, Y = TX,  where T denotes the
transformation matrix. In lossy compression, M most significant
components are selected such that M � N, whereas the residual
signal (signal corresponding to remaining N–M transform domain
coefficients) is also coded for lossless compression. The key idea
is to exploit the properties of the transform domain elements (Y)
such as sparsity, regularity, to form a compact code. Transforms

applied include discrete cosine transform [3],  sub-band transfor-
mation [10], wavelet-packet transform [11], and integer lifting
wavelet transform [12,13].

1.3. Multichannel compression schemes

Predictive and transform based compression schemes operate
naively on EEG signals without using any domain-specific knowl-
edge. EEG signals recorded from spatially adjacent channels possess
a high degree of correlation, which can be used to design effi-
cient compression techniques. Techniques proposed to compress
multi-channel EEG include graph-theoretic based approach [14],
Karhunen–Loeve transform [15], exogenous input model [16] and
vector quantization [3].

Apart from the above-mentioned EEG compression schemes,
some ad hoc methods also have been designed for EEG com-
pression: genetic algorithm based fractal EEG coding [17], EEG
approximation by extracting patterns (classified signature and
envelope set) [18]. The emerging field of compressed sensing opens
the way  to acquire signals with very few random measurements
(compression while sensing), well below the Nyquist rate. For
acquiring signals with compressed sensing, the signals need to
be sparse in some domain (e.g., time–frequency domain). Some
studies used compressed sensing and finite rate of innovation tech-
niques to compress EEG [19,20].

Lossless compression techniques compress the signal by remov-
ing redundancies, while allowing perfect reconstruction of the
original signal waveform. In lossless predictive coding, the residu-
als are also coded along with the predictive coefficients. In lossless
transform coding, integer transforms are selected to ensure per-
fect reconstruction. Antoniol and Tonella [3] presented an excellent
survey of lossless EEG compression techniques such as predictive
coding, transform coding and vector quantization schemes. Lossless
compression schemes often registers low compression perfor-
mance compared to lossy compression, because of the inherent
noise in the signal. This noise have no or very less correlation that
could be exploited by the compression algorithms; in lossy com-
pression this noise is removed to improve performance, but lossless
compression schemes attempts to model this residual noise. Many
schemes attempt to improve the lossless compression performance
by modeling the residuals; this includes context-based bias cancel-
lation [4] and detailed prediction residual modeling [8].

Here, we propose to utilize any inherent correlations in EEG to
improve the lossless compression performance, by arranging the
EEG in matrix form. In our previous work [21], we  studied the
Rate–Distortion (R–D) performance of two variants of an EEG com-
pression algorithm; first one operates on the EEG arranged in the
standard vector form (1-D), whereas the second variant arranges
EEG in matrix form (2-D) before compression. The 2-D based com-
pression algorithm gave substantial reduction in the distortion at
low bit rates compared to the 1-D scheme. In addition, 2-D based
scheme also improved the lossless compression as well. In this
paper, we  systematically explore the following: how to arrange
EEG signal in matrix, the amount of smoothness of this matrix
in time domain and transform domain (wavelet transform), and
compression of this matrix with a two-stage compression scheme.
We also compress EEG using JPEG2000, well-known image com-
pression standard, lossless predictive coding (shorten) and entropy
coding. We  will show that the 2-D based schemes achieve higher
performance compared to the other above-mentioned schemes.

The paper is structured as follows: In Section 2, we  explain
the arrangement of EEG signal in matrix form, and we analyze its
smoothness in time and wavelet transform domain. In Section 3, we
explain the two-stage compression scheme and the optimal lossy
layer bit rate selection; we  also present a brief outline of the other
lossless compression schemes here. We  discuss the experimental
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