
Biomedical Signal Processing and Control 6 (2011) 422– 426

Contents lists available at ScienceDirect

Biomedical  Signal  Processing  and  Control

j o ur nal homep a ge: www.elsev ier .com/ locate /bspc

Short  communication

Can  back-projection  fully  resolve  polarity  indeterminacy  of  independent
component  analysis  in  study  of  event-related  potential?

Fengyu  Cong ∗,  Igor  Kalyakin,  Tapani  Ristaniemi
Department of Mathematical Information Technology, PL 35 (Agora), University of Jyväskylä, 40014 Jyväskylä, Finland

a  r  t  i  c  l  e  i n  f  o

Article history:
Received 4 January 2010
Received in revised form 19 May 2010
Accepted 19 May  2010
Available online 15 September 2010

Keywords:
ICA
Global optimization
Local optimization
Parallel
Sequential
Projection
Polarity
ERP

a  b  s  t  r  a  c  t

In  the  study  of  event-related  potentials  (ERPs)  using  independent  component  analysis  (ICA),  it  is  a
traditional  way  to project  the  extracted  ERP  component  back  to  electrodes  for  correcting  its  scaling  (mag-
nitude  and  polarity)  indeterminacy.  However,  ICA  tends  to be  locally  optimized  in practice,  and  then,  the
back-projection  of  a  component  estimated  by the  ICA  can  possibly  not  fully  correct  its polarity  at every
electrode.  We  demonstrate  this  phenomenon  from  the  view  of  the  theoretical  analysis  and  numerical
simulations  and  suggest  checking  and  modifying  the  abnormal  polarity  of  the  projected  component  in  the
electrode  field  before  further  analysis.  Moreover,  when  several  components  are  to be  projected,  instead
of the  parallel  projection  of  those  components  simultaneously,  the  sequential  projection  of  component
by  component  permits  the  correction  of the  abnormal  polarity  of a  certain  projected  component  at  a  cer-
tain electrode,  which  can  improve  the  accuracy  of  the  back-projection.  Furthermore,  after  one extracted
component  by  the  ICA  is  projected  back  to electrodes  under  the  global  optimization,  we cannot  achieve
the  real  source  yet,  but  the  determined  scaled  source,  i.e.,  the  multiplication  between  the real  source  and
the mapping  coefficient  from  the  source  to  the  point  at the  scalp.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Independent component analysis (ICA) [1] has been extensively
used in the study of event-related potentials (ERPs) [2].  It is known
that the independent components (ICs) estimated by ICA tend to
possess the magnitude and polarity (positive or negative) inde-
terminacy [1]. Because the peak amplitude is one of the most
important parameters to describe an ERP [3],  the correction of such
ambiguity of an IC is necessary to the study of ERPs. Thus, a back-
projection of the desired ERP component to the electrode field often
follows the ICA decomposition [4].  For example, as Makeig and col-
leagues noted, the projection of the ith IC onto the original data
channels is given by the outer product of the ith row of the compo-
nent activation matrix with the ith column of the inverse unmixing
matrix, and is in the original units (e.g., microvolts) [4].  However,
despite of the vital influence of the back-projection to the further
study of ERPs, the performance of the back-projection has never
been deeply analyzed except by our previous report [5].

This study attempts to analyze the mathematical composition
of the back-projection of ICs under the global and local optimiza-
tion of the ICA decomposition [1,6,7],  respectively. Particularly, the
polarity is important to identify an ERP, for example, N1 is the neg-
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ative peak and P3 is the positive peak [3] under certain reference.
This study mainly discusses the polarity of the back-projection of
an estimated ERP-like IC in the electrode field.

2. Abnormal polarity of projected components at electrodes

2.1. General solution of ICA on EEG

The classic ICA decomposition on EEG may  be illustrated as

x(t) = As(t), (1)

y(t) = Wx(t), (2)

where x(t) = [x1(t), . . .,  xN(t)]T denotes available multichannel
EEG recordings at the scalp, s(t) = [s1(t), . . . , sM(t)]T represents
unknown sources of the brain, A with full rank contains the
unknown mapping coefficients from any source to any electrode, W
exhibits the unmixing matrix, and y(t) = [y1(t), . . . , yM(t)]T mani-
fests the extracted components by the ICA. The ICA decomposition
is to find the unmixing matrix through minimizing or maximizing
some cost functions [1,7]. Without loss of generality, we assume N
sources and N sensors in this study.

Usually, after the unmixing matrix is obtained, its inverse is
often computed to recover of original units of recordings. The pro-
jection matrix is simply obtained by

B = W−1. (3)
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This is because every column of the projection matrix includes
the relative projection strengths of the corresponding component
onto all of the scalp sensors [4].  Furthermore, the accuracy of such
projection depends on the performance of the ICA decomposition.

2.2. Global matrix and projection matrix

One method to evaluate the performance of ICA is to investigate
its global matrix C [7].  Then, the ICA solution in Section 2.1 can be
interpreted as below

C = WA. (4)

y(t) = Cs(t). (5)

B = AC−1. (6)

When only one nonzero element exists in each row and each
column of the global matrix C, the performance of the ICA is globally
optimized; otherwise it is locally optimized.

2.2.1. Global optimization and projection matrix
Under the global optimization, C can be decomposed into a per-

mutation matrix P and a diagonal matrix D, i.e.,

C = PD. (7)

Thus, the estimated components turn to be

y(t) = PDs(t). (8)

Explicitly, Eq. (8) means that every estimated component is
scaled version of the corresponding source and does not contain
the information of other sources.

Furthermore, the projection matrix becomes

B = AD−1P−1. (9)

Because D−1 and P−1 are also the diagonal and permutation
matrixes respectively, every column of the projection matrix B cor-
responds to the permuted and scaled version of the relevant column
of the mapping matrix A.

2.2.2. Local optimization and projection matrix
Under the local optimization, the global matrix cannot be fac-

torized into the multiplication of the permutation matrix P and
the diagonal matrix D, hence, Eqs. (7)–(9) become inequations, i.e.,
C /= PD,  y(t) /= PDs(t), B /= AD−1P−1.

Consequently, every estimated component is still the mixture
of some sources, and every column of the projection matrix B is the
mixture of randomly scaled relative projection strengths of some
components onto all of the scalp sensors. In this case, the estimated
components and the projection matrix can only be obtained from
Eqs. (2) and (3).  Since such a case may  appear with very high prob-
ability using ICA to extract ERPs [5,6], we are interested in studying
the projection under the local optimization.

2.3. Project one component back to electrodes

The projection of the kth IC at the ith electrode can be described
as

eik(t) = bikyk(t), (10)

where bik is the ith element of the kth column of B and yk(t) is the
kth component of y(t).

2.3.1. Projection under global optimization
Under the global optimization, based on Eq. (8),  the estimated

component can be described as

yk(t) = pkmdmmsm(t) = dmmsm(t), (11)

where pkm with value ‘1’ in a permutation matrix is the nonzero
element of P at the kth row and the mth column, dmm is the mth
diagonal element of D, and sm(t) is the mth element of s(t). Based
on Eq. (9), the projection coefficients at the kth column of B and the
ith electrode can be interpreted as

bik = aim
1

dmm
pmk = aim

dmm
. (12)

Substituting Eqs. (11) and (12) into Eq. (10), we obtain the pro-
jection of the kth component at the ith electrode as below,

qik(t) = aimsm(t), (13)

where, to discriminate the projection under the local optimization,
qik(t) is used for the notation instead of eik(t) for the projection
under the global optimization.

2.3.2. Projection under local optimization
Under the local optimization, the estimated component derived

from Eq. (5) can be illustrated as

yk(t) =
∑N

j=1
ckjsj(t), (14)

where some ckj (j is the element of
{

1, . . . , N
}

) may be zero and
this depends on the performance of the ICA. Substituting Eq. (14)
into (10), we achieve the projection of the kth component at the ith
electrode under the local optimization as the following

eik(t) = bik

∑N

j=1
ckjsj(t) = bikckmsm(t) + bik

∑N

j=1,j /=  m
ckjsj(t).

(15)

The right part of Eq. (15) is separated into two  items because
bikckmsm(t) can dominate eik(t) under the satisfactory ICA perfor-
mance, i.e., in the kth row of the global matrix C,∣∣ckm

∣∣ >>
∣∣ckj

∣∣ , (16)

where |•| denotes the absolute value of a scalar.
Under the assumption of Eq. (16), to a certain source, bikckm can

determine the polarity and can almost determine magnitude of the
projected component in the electrode field. Under the global opti-
mization, bikckm in Eq. (15) is equal to the mapping coefficient aim in
Eq. (13); however, under the local optimization, both ckm and bik do
not obey any essential relationship as illustrated in Section 2.2.2,
moreover, they may  have random polarities, respectively, hence,
the sign of bikckm may  be different with that of aim, then, the polar-
ity of the projected component eik(t) may  be opposite to that of
the mapping component qik(t). In such a case, we  define that the
abnormal polarity happens [5].

To correct the abnormal polarity, the projected component eik(t)
can be multiplied by ‘−1’. Indeed, such correction does not change
the sign of the ‘actual’ brain sources. Under the local optimization,
Eq. (15) is the approximation of Eq. (13) under the assumption men-
tioned above. This means there are errors between qik(t) and eik(t).
Such errors are just originated from the separation matrix W in Eq.
(2). Under the global optimization, as illustrated by Eqs. (8) and
(11), the separation matrix W can guarantee that only one esti-
mated component corresponds to one source. However, under the
local optimization, as illustrated by Eq. (14), the separation matrix
W cannot guarantee that only one estimated component contains
the information of one source. Furthermore, since the projection
matrix B is the inverse of the separation matrix, it contains errors
too. The correction made in this study is indeed the post-processing
after the ICA, and it can also be regarded as the further processing
on certain element of the projection matrix B. So, the correction
does not change the real source in the brain.
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