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a  b  s  t  r  a  c  t

Permutation  entropy  (PE)  is  a well-known  and  fast  method  extensively  used  in  many physiological
signal  processing  applications  to measure  the  irregularity  of  time  series.  Multiscale  PE (MPE)  is based
on  assessing  the  PE for a number  of coarse-grained  sequences  representing  temporal  scales.  However,
the  stability  of the  conventional  MPE  may  be compromised  for short  time  series.  Here,  we propose  an
improved  MPE  (IMPE)  to reduce  the  variability  of  entropy  measures  over long  temporal  scales,  leading  to
more reliable  and  stable  results.  We  gain  insight  into  the  dependency  of MPE  and  IMPE  on  several  straight-
forward  signal  processing  concepts  which  appear  in  biomedical  activity  via  a set  of synthetic  signals.  We
also  apply  these  techniques  to real  biomedical  signals  via  publicly  available  electroencephalogram  (EEG)
recordings  acquired  with  eyes  open  and  closed  and  to ictal  and  non-ictal  intracranial  EEGs.  We  conclude
that  IMPE  improves  the  reliability  of  the  entropy  estimations  in comparison  with  the  traditional  MPE  and
that  it is  a  promising  technique  to characterize  physiological  changes  affecting  several  temporal  scales.
We  provide  the  source  codes  of  IMPE  and  the synthetic  data  in  the  public  domain.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

There are several main types of measures, such as, entropies and
fractal dimensions, to compute the complexity of a system or signal.
These are used to compare signals and distinguish or detect regular
and random epochs [1]. As mentioned in [2], healthy subjects and
people with disease can often be distinguished by the complexity
of their physiological activity [3].

Entropy is one of the most popular and powerful concepts
to evaluate the dynamical characteristics of a signal. This metric
measures the uncertainty and irregularity of a time series. Higher
entropy generally demonstrates higher uncertainty, whereas lower
entropy shows more regularity and certainty of a system [1,4].
There are a number of entropy approaches commonly applied
to physiological recordings, such as approximate entropy (ApEn)
[5], sample entropy (SaEn) (Richman and Moorman 2000), fuzzy
entropy (FuEn) (Chen, Wang et al., 2007), permutation entropy (PE)
[1] and wavelet entropy (Rosso, Blanco et al., 2001), each of which
has its own advantages and disadvantages [6].
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PE is based on the order relations among values of a signal,
the permutation patterns. It is analogous to the Lyapunov expo-
nents for some well-known chaotic dynamical systems, such as
the noise-free logistic map, although PE yields more meaningful
results in the presence of observational and dynamical noise [1,7].
Compared with the other entropies, such as ApEn and FuEn, PE is
theoretically simple and it has fewer parameters, it is relatively
robust to artifacts and noise, and is computationally fast. Further-
more, the PE can be used for both the non-stationary and nonlinear
signals. With respect to the signal length, PE is more robust than
the zero-crossing rate (ZCR) [1]. Because of the aforementioned
advantages, PE has been extensively employed in the numerous
real world physiological signal and image processing applications
[7,8]. For example, Li et al. investigated the behavior of PE to pre-
dict absence seizures in rats using EEG signals [9]. They showed
that PE can track the dynamical changes of EEG recordings and that
PE can predict absence seizures better than SaEn [9]. Ferlazzo et al.
employed PE to reveal abnormalities of cerebral activity in patients
with typical absences [10]. They concluded that PE is a valuable tool
to detect abnormalities of cerebral electrical activity which are not
revealed by conventional approaches for EEG signals [10].

However, PE is limited to assessing the values of entropy for only
one temporal scale, the one associated with the original sampling
of the signals. This may  limit the ability of PE to inspect dynamics
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residing at longer temporal scales. In this sense, multiscale entropy
(MSE), proposed by Costa et al. [3,11], calculates entropy over a
range of scales to evaluate the complexity of a time series. In the
original definition of MSE, SaEn was the metric used to assess the
entropy over the temporal scales [3,11]. Nonetheless, the concept of
multiscale evaluation of entropy can be extended to other entropy
metrics. Morabito et al. used multiscale PE (MPE) to assess the com-
plexity of electroencephalogram (EEG) recordings in Alzheimer’s
disease [8].

The multiscale evaluation of entropy has notorious advantages.
First of all, it allows us to inspect dynamics along more than one
temporal scale. This is very significant for biological systems which
need to operate across multiple spatial and temporal scales, and
therefore their complexity is also multiscaled [3,12]. Secondly,
unlike SaEn, MSE  is consistent with the Fogedby study [13] illustrat-
ing that the complexity of 1/f  noise is higher than white Gaussian
noise (WGN).

The coarse-graining of MPE  and MSE  methods are based on
Costa’s algorithm [3,8,11]. The first step of MPE, the coarse-graining
process, considerably reduces the time series length because, to
inspect the deeper temporal scales, MPE  uses a procedure similar
to sub-sampling. This may  yield an imprecise estimation of entropy
when the time series is too short. Hence, the basic MPE  method may
not provide a reliable analysis for short time series. To overcome
this problem, in this paper, an improved MPE  (IMPE) is proposed.
This is in contrast with the alternative MPE  algorithm by [14] called
modified MPE  (MMPE). In the MMPE, a coarse-grained sequence is
built subsampling the original signal by taking one out of � sam-
ples, where � denotes the temporal scale. However, no filtering
is used. Therefore, this procedure will necessarily lead to aliasing,
thus changing important properties of the signal. For example, for
� = 3 and i = 2, y(3)(2,j)={x2,x5,x8,...},  some important information of
the original time series {x1,x2,...,xN} may  be omitted in the MMPE.

Because of the relevance and the possible usefulness of MPE  and
IMPE in a number of biomedical signal analyses, it is important to
understand and exemplify the behavior of the measure for differ-
ent kinds of classical signal concepts such as frequency, amplitude,
noise power, and signal bandwidth. This study addressed this issue
to help to illustrate the dependency of both MPE  and IMPE on these
concepts and to compare both techniques. Moreover, we  will illus-
trate the application of MPE  and IMPE to five different datasets of
real EEG signals.

In the following section, the concepts of PE and MPE  are
described. Our proposed method is explained in Section 3. In Sec-
tion 4, the synthetic signals and real EEG datasets employed in this
paper are introduced. Then, the results and discussions of the pro-
posed method (IMPE) and the conventional MPE  are explained in
Sections 5 and 6, respectively. The conclusions of the paper are
drawn in the last section.

2. Background on PE and MPE

In this section, we briefly describe PE and MPE.

2.1. Permutation entropy

Assume we have a given time series of length N, and
let the time series be y = {y1,y2,...,yN}. At each time t of y,
a vector including the dth subsequent values is constructed
as: Yt

d,l={yt,yt+l,...yt+(d-2)l,yt+(d-1)l}for t = 1,2,. . .,N − (d − 1)l,  where
d, which is named the embedding dimension, determines how
much information is contained in each vector and l is the
time delay. To calculate the PE, the d values yi are associated
with numbers from 1 to d and arranged in increasing order as
{yt+(j1−1)l, yt+(j2−1)l, ..., yt+(jd−1−1)l, yt+(jd−1)l}. For different samples,

there will be d! potential ordinal patterns, �,  which are named
“motifs”. For each �t, p(�t) demonstrates the relative frequency
as follows:

p(�d,l
i

) = #{ t| t ≤ N − d, type(Yd,l
t ) = �d,l

i
}

N − d + 1
(1)

where #{} denotes the cardinality of the set (the number of ele-
ments) [1,7]. The PE is computed as follows:

H(y, d, l) = −
�k=d!∑
�k=1

p(�k) ln p(�k) (2)

When all motifs have equal probability, the largest value of PE
is obtained, which has a value of ln(d!). In contrast, if there is only
one p(�k) different from zero, which illustrates a completely regular
signal, the smallest value of PE is obtained as much as 0 [1,7].

2.2. Multiscale permutation entropy

MPE, like MSE, includes two  main steps. First, a “coarse-
graining” process is applied to a time series. Consider a real-valued
time series {x1,x2,...,xN} of length N. Multiple successive coarse-
grained versions are made by averaging the time data points within
non-overlapping windows of increasing length �, which is called
scale factor. A schematic illustration of the coarse-grained proce-
dure is shown in Fig. 1. According to the following equation, each
element of the coarse-grained time series yj

(�) is defined as:

yj
(�) = 1

�

j�∑
i=(j−1)�+1

xi 1 ≤ j ≤
⌊

N

�

⌋
(3)

where �a� denotes the largest integer not greater than a. The length
of each coarse-grained time series is

⌊
N
�

⌋
. Second step is calculating

the PE for each coarse-grained time series. The attained values can
be plotted as a function of the scale factor � [3,8,11].

3. Improved multiscale permutation entropy

The conventional MPE  has two  main drawbacks. Firstly, the MPE
is not symmetric. For example in scale 3, we  could rationally expect
the metric to behave the same for x3 and x4, in comparison with x2
and x3. However, at scale 3, x1, x2 and x3 are separated from x4, x5
and x6. The second drawback is the relative variability of the MPE
results for long temporal scales. When the MPE  is computed, in the
coarse-graining process, the number of samples of the resulting
coarse-grained sequence is

⌊
N
�

⌋
. When the scale factor � is high,

the number of samples in the coarse-grained sequence decreases.
This may  yield an unstable measure of entropy.

To overcome these problems, the IMPE is proposed based on the
idea originally reported by Wu for MSE  [15]. Here, because of some
advantages of PE over SaEn, we  use PE instead. Hence, the IMPE is
calculated in two main steps:

1) In the first step, z(�)
i

= {yi,1
(�), yi,2

(�), ...}  are generated where

yi,j
(�) =

∑�−1

f =0
xf +i+�(j−1)

� As can be observed in Fig. 2, in the IMPE

algorithm, for each �, we  have � different time series z(�)
i

|(i =
1, ..., �), while in the MPE  method, only Z1(�)is considered.

2) For a defined scale factor � and embedding dimension d, PE of
each of z(�)

i
|(i = 1, ..., �) is separately calculated. Then, the aver-

age of PE values is computed as follows:

IMPE(x, �, d) = 1
�

�∑
i=1

PE(z(�)
i

) (4)
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