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a  b  s  t  r  a  c  t

The  increased  power  and  resolution  capabilities  of  3T  Magnetic  Resonance  (MR)  scanners  have  extended
the reach  of  Magnetic  Resonance  Spectroscopy  as  a non-invasive  diagnostic  tool.  Practical  sensor  cali-
bration  issues,  magnetic  field  homogeneity  effects  and  measurement  noise  introduce  distortion  into  the
obtained  spectra.  Therefore,  a combination  of robust  preprocessing  models  and  nonlinear  pattern  analysis
algorithms  is  needed  in  order  to  evaluate  and  map  the  underlying  relations  of  the  measured  metabolites.
The  aim  of  this  work  is  threefold.  Firstly  we  propose  the  use  of  a  paired  support  vector machine  kernel
utilizing  metabolic  data  from  both  affected  and  normal  voxels  in  the  patient’s  brain  for  lesion  classifica-
tion  problem.  Secondly  we  quantify  the performance  of  an  optimal  reduced  feature  set  based  on  targeted
CSI-144  scans  in  order  to further  reduce  the  data  volume  required  for  a  reliable  computed  aided  diag-
nosis.  Thirdly  we expand  our previous  formulation  to  full multiclass  classification.  The  long  term  aim
remains  to  provide  the  human  expert  with  an easily  interpretable  system  to assist  clinicians  with  the
time,  volume  and  accuracy  demanding  diagnostic  process.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Magnetic Resonance Spectroscopy (MRS) has been studied for
more than a decade as a promising diagnostic tool for a variety of
pathologies [1–4]. Coupled with the morphological features pro-
vided by Magnetic Resonance Imaging (MRI) techniques [5],  it can
provide accurate identification and quantification of biologically
important compounds in soft tissue.

The transition of MRS  from experimental evaluation studies to
clinical practice relies heavily on the implementation and stan-
dardization of robust methodologies that decouple the diagnostic
problem from inter and intra-patient variations, sensor calibration
and procedural issues and the varying expertise of clinical person-
nel.

The classification problem itself is recognized as a nonlinear
multiclass problem with varying difficulty depending on the spe-
cific class labeling [1,3,5].  In particular the partitioning of gliomas
versus metastatic tumour classes is notably more challenging rel-
ative to other class pairs.

Additionally, a new generation of 3Tesla MRS scanners calls
for adaptation of existing classification models, optimized on 1.5 T
equipment, and evaluation of possible performance gains [6].
Regardless of the sensor technology used, the inter and intra patient
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variations of the collected spectra for each pathology class hin-
der the establishment of simple visual markers and outline the
need for the development of adaptive nonlinear decision support
tools.

Building upon our previous results [6–8] we  propose the use
of a SVM kernel that leverages the information conveyed by intra
patient metabolite measurements. We also extend our analysis to
full multiclass classification, utilizing an updated more extensive
dataset of high resolution 3 T spectra obtained from patients at the
Larisa University Hospital.

We  additionally evaluate the use of a reduced metabolic feature
set as an alternative to continuous spectrum classification in an
effort to address practical compatibility, transferability and speed
issues involved with the coupling of MRS  scanners and clinical deci-
sion support systems. The utilized MRS  scanner does not provide a
well documented file access interface, therefore hindering auto-
mated high throughput access to the large volume of raw data
obtained during each exam. Recording a minimal subset of exam
metabolites circumvents this problem and evaluate their effective-
ness as classification features.

The rest of this paper is organized as follows. Section 2 out-
lines the data mining and pattern analysis tools that we  employ
along with the proposed problem-specific SVM kernel. Section 3
provides an overview of the experimental results that we obtained
on the Larisa MRS  dataset and Section 4 summarizes the key
findings and provides general guidelines and pointers to future
research.
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2. Data mining and pattern analysis tools for MRS

2.1. Dataset and preprocessing

In order to verify the applicability of the proposed scheme the
classification model was  evaluated on a dataset collected at the MR
Department, Larisa University Hospital, Greece using a GE Health-
care Signa® HDx MRS  Scanner.

A total of 84 consecutive patients (age 8–77 years) under
investigation of brain lesions (tumours, multiple sclerosis, glio-
sis, leukoencephalopathy, meningiomas, etc.) were enrolled in this
study before any surgical biopsy and/or resection.

The typical proton MR  spectroscopic features for the afore-
mentioned lesions are NAA, Cho, Cre, mI,  lipids and lactate.
N-acetyl-aspartic acid (NAA) is present in the health brain
parenchyma and is the highest peak in the normal spectrum, res-
onating at 2.02 ppm. The utility of NAA as an axonal marker is
supported by the loss of NAA in many white matter diseases,
including multiple sclerosis and leukoencephalopathy. Malignant
tumours cause destruction of neurons and thus a loss of NAA and
purely extra-axial tumours, such as typical meningiomas, demon-
strate no NAA.

Choline (Cho) is a metabolic marker of membrane density
and integrity, with its peak located at 3.22 ppm. Inta-axial and
extra-axial tumours show an increase in the Cho peak because
of increased cellularity. Increases in Cho relative to NAA are also
noted in gliosis and multiple sclerosis. Therefore, difficulty may  be
encountered in interpreting results in some lesions, such as tume-
factive multiple sclerosis.

In simplistic terms, Creatine (Cre) is a marker of “energy
metabolism”. The central peak on the spectrum at 3.02 ppm rep-
resents the sum of creatine and phosphocreatine. In the clinical
setting, Cre is assumed to be stable and is used for calculating
metabolite ratios (Cho:Cre and NAA:Cre ratios). It may  be useful
to note that Cre itself does not originate in the brain, and hence
systemic disease (such as renal disease) may  impact on Cre levels
in the brain.

Myo-inositol (mI) is a simple sugar, with a peak found at
3.56 ppm. It is considered a glial marker. An increase in mI  con-
tent is believed to represent glial proliferation or an increase in
glial cell size, both of which may  occur in inflammation. It is ele-
vated in the setting of gliosis, astrocytosis, and in disorders such
as Alzheimer’s dementia. mI  has also been labeled as a break-
down product of myelin present in tumourous lesions and multiple
sclerosis.

Membrane lipids have very short relaxation times and are not
usually visualized on intermediate or long TE, but are visualized
on short TE. They produce peaks between 0.8 and 1.5 ppm and
are usually large broad peaks. The presence of lipids may  indicate
voxel contamination by diploic space fat, scalp and subcutaneous
tissues (when the voxel is placed near these structures). Lipid sig-
nals in pathology are generally associated with necrosis such as in
high-grade brain tumours or metastases. In addition, lipid signals
have been observed in brain MR  spectra of patients with multiple
sclerosis [9] and lipomatous meningiomas [10].

Under normal circumstances, lactate is present only in minute
amounts in the brain and is not resolved using the normal spectro-
scopic techniques. However, under conditions where the aerobic
oxidation mechanism fails and anaerobic glycolysis takes over,
such as brain ischaemia, hypoxia, seizures, metabolic disorders, and
areas of acute inflammation, lactate levels increase significantly.
Lactate also accumulates in tissues that have poor washout, like
cysts and necrotic and cystic tumours. When present, it is recog-
nized as a doublet (twin peak) at 1.33 ppm. Lactate is characterized
by variable projection of the peak at different TEs. On acquisitions
using intermediate TEs (135/144 ms), the doublet peak is inverted

below the baseline, but at very short or very long TE (30 or 288 ms),
the doublet peak projects above the baseline [11].

All patients gave a written informed consent to participate in
the study. 1H-MR spectroscopy studies were performed on a 3Tesla
MRI  whole body unit (GE, Healthcare, Signa® HDx) using both auto-
mated PROBE single voxel and multivoxel (Chemical Shift Imaging)
spectroscopy packages before contrast administration.

Single Voxel (SV) spectroscopy was performed using the point-
resolved spectroscopy (PRESS) pulse sequence, provided by the
manufacturer at an echo time of 35 ms  at axial, sagital and coronal
planes. The repetition time was 1500 ms.  Chemical Shift Imaging
(CSI) was performed using PRESS pulse sequence, in an axial plane
at an echo time of 144 ms  and a repetition time of 1000 ms.  The CS
imaging slice was positioned in areas of maximum extension of the
lesion.

In both cases of SV and CSI the regions of interest were defined
as follows: (1) inside the lesion, (2) outer diameter of the lesion
(if possible), (3) contralateral side, and (4) normal appearing white
matter.

In cases of pathology we  avoided inclusion of obvious necro-
sis, cyst, hemorrhage, edema, calcification and normal appearing
brain tissue in the voxel, to avoid lesion’s underestimation. Thus
ROIs with potential contamination with cerebrospinal fluid, sub-
cutaneous fat, or eye motion have been excluded from analysis.

For voxel positioning, fluid attenuated inversion recovery
(FLAIR, TR = 9502 ms,  TE = 128 ms)  or a home-designed T2-
weighted fast spin echo (TR = 4520 ms,  TE = 102 ms)  sequence in
axial, coronal and sagittal planes were preceded using 26 cm field of
view, 5 mm  slice thickness and NEX equal to 1. The size and location
of the voxels were carefully adjusted inside the lesion or in healthy
brain parenchyma for the best possible shimming and spectra accu-
racy. The exact voxel positioning protocol is indicated in Fig. 1. Due
to data quality and availability limitations the resulting features
used for classification included spectral measurements from areas
1 (inside the lesion) as pathological and 3 (contralateral) as normal.
The features (metabolite measurements) obtained from each area
were utilized either as a single feature vector or separately as part
of the proposed composite kernel, described in Section 2.2.

The MRS  sensor data were preprocessed using standard sta-
tistical methods for outlier detection, normalization and peak
integration. Peak integration was performed in the ranges
3.35–3.17 ppm (choline), 3.15–2.99 (creatine), 2.23–1.97 (NAA),
3.02–3.31 (creatine + choline), 1.30–0.90 (lipids and lactate) and
3.69–3.54 myolnositol.

The diagnostic class labelings were obtained from three sources
(1) histological examination (where available), (2) radiologist
expert assessment, and (3) physicist’s expert assessment. Histolog-
ical data were available for only ∼42% of the patients. The resulting
confusion matrices indicated a full agreement of the radiologist’s
and physicist’s class labelings whereas there are notable differ-
ences between the above labelings and histological class labeling
for the given patient subset. The correspondence between the
radiologist diagnosis and histological results are shown in Fig. 2.
Despite the fact that histological evaluation results are considered
the gold standard, the final classification system’s training was
performed using the radiologist’s diagnosis due to the extensive
data missingess of the histological labelings. Under this prism, the
proposed model is at this phase evaluated from the aspect of opti-
mally mapping a radiologist’s diagnostic behavior. This classifier is
intended as a primary expert mapper to be integrated in the future
in a multi classifier system that will simulate a committee of clinical
experts.

Since brain tumour classification is inherently a multiclass prob-
lem, one has to resort to techniques that allow for handling such
problems with a pool of classifiers that provide binary outcomes.
There are numerous approaches to multiclass mapping in litera-
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