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a  b  s  t  r  a  c  t

Typical  fluorescence  microscopy  images  contain  large  amounts  of noise,  which  depends  on  the  signal
in a complex  manner.  This  characteristic  is  substantially  different  from  digital  photography  or  satellite
data, for  which  most  of the existing  denoising  algorithms  have  been  designed.  Therefore,  an  efficient
estimation  of the noise  in  fluorescence  micrographs  and  its removal  pose  a challenge.  On  the  other  hand,
as  shown  previously,  the use  of  a calibrated  microscopy  detector  may  allow  computation  of  the  sig-
nal  and  noise  characteristics  directly  from  the  image  acquisition  parameters.  Therefore,  we  propose  a
denoising  algorithm  that  takes  advantage  of  this  information  to obtain  an  estimate  of  the  signal  and
the  corresponding  noise  in  the  wavelet  domain.  This  general  model  was  constructed  using  actual  flu-
orescence  micrographs  and  utilizes  intra-  and  inter-scale  correlations  of  the  wavelet  coefficients.  The
signal-to-noise  estimate  was  then  applied  to perform  local  soft  thresholding  in the  wavelet  domain.
The  performance  of  the  proposed  algorithm  was  tested  using  a set  of images  of  several  common  sub-
cellular  structures  containing  various  amounts  of  signal-dependent  and  signal-independent  noise.  The
denoising  performance  of  the  new  algorithm  depends  on  the actual  amount  of noise  and  on  the  type  of
imaged  structures.  In  every  case,  we  demonstrated  that the  proposed  algorithm  is superior  to  two  other
locally  adaptive  denoising  algorithms  (AdaptShrink  and  BivarShrink)  and  to  optimal  subband  adaptive
soft  thresholding  (OraclShrink).

©  2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The prominence of noise, which is caused by a low number of
detected photons, is a typical problem in images registered with flu-
orescence microscopy. The purpose of denoising is to eliminate this
random image component while retaining the biological structures
under study. Traditionally, this is achieved by linear processing,
such as spatial/temporal averaging and Wiener filtering. Inspired
by the seminal works performed by Donoho and Johnstone [1–3],
a number of studies have used nonlinear filtering based on (soft)
thresholding in the wavelet domain. The main idea is to subtract
the threshold value (T) from all of the coefficients greater that T and
set the others to zero. In general, the threshold should be propor-
tional to the variance of the noise and inversely proportional to the
standard deviation of the distribution of the wavelet coefficients
in the absence of noise [4,5]. Determination of the optimal

∗ Corresponding author. Tel.: +48 322372151.
E-mail addresses: tbernas@nencki.gov.pl (T. Bernas), rstarosolski@polsl.pl

(R. Starosolski), Robert.Wojcicki@polsl.pl (R. Wójcicki).

threshold is not a trivial problem, and several methods have thus
been developed to this end. The signal and noise characteris-
tics (and thus the threshold value) may  be globally estimated as
proposed by the VisuShrink algorithm [1]. Another option is the
adoption of subband-adaptive thresholding, as in the SureShrink
algorithm [2]. Superior performance is usually achieved with
another data-driven algorithm, AdaptShrink [4]. The efficiency of
denoising may  be further improved by taking the correlations
between coefficients at different resolution scales into account
[6–9].

It should be noted that the statistical models of wavelet trans-
form coefficients adopted in these schemes were constructed for
natural images [10–13]. The typical dynamic range of this type
of data corresponds to 256 levels (8 bits), with the intensity
histogram spanning the whole range. Conversely, when larger
dynamic range is used, histograms of such images tend to be
sparse [14]. This effect is a source of a significant data redundancy.
Furthermore, the majority of denoising algorithms have been
designed for signal-independent noise, which is the major arti-
fact in images acquired with consumer cameras operating at a high
photon flux. These prerequisites may  not be met  in fluorescence
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Fig. 1. Dependence of noise on the magnitude of the wavelet transform coefficients (panel A) at the first decomposition level of the HH band. One of the coefficients (C) of
the  signal-variance model (Eq. (3)) is represented as a function of the image registration parameters (levels of additive and Poisson noise) obtained using the Chebyshev
polynomial (panel B, Eq. (4)).

microscopy, where a scarcity of light is the major limitation, but
image acquisition is performed with low-noise detectors operat-
ing at a high (16 bits) dynamic range. Fortunately, when using
this modality, one does not have to compute the signal and noise
characteristics from the images that are to be denoised. This infor-
mation may  be available beforehand if a calibrated detector (e.g.,
CCD and PMT) is used with known image acquisition parameters
[15,16].

In this study, we constructed spatial models of wavelet-domain
noise as a function of the image acquisition parameters of a typical
CCD detector used in microscopy. We  then adapted a bivari-
ate shrinkage algorithm [6] to compute and apply the wavelet
threshold in a locally adaptive inter-scale-dependent manner. We
compared the proposed denoising approach to AdaptShrink [4], the
original BivarShrink [7] and optimal subband adaptive soft thresh-
olding (OraclShrink).

2. Materials and methods

2.1. Cells and fluorescence labeling

MSU  1.1 human fibroblasts and HepG2 human hepatoma cells
were cultured on 20-mm-diameter, 0.17-mm-thick coverslips
placed in tissue culture Petri dishes. DMEM (Sigma), supplemented
with 10% fetal bovine serum (Gibco) and antibiotics, was used.
Fixed and stained bovine pulmonary artery endothelial cells were
not cultured in our laboratory but purchased from Molecular
Probes/Invitrogen as FluoCells prepared slide #2.

Coverslips with live cells (MSU 1.1 or HepG2) were washed three
times with PBS (with Mg+2 and Ca+2) and fixed with formalde-
hyde (1% in PBS at 20 ◦C for 1 h). MSU  1.1 cells were stained by
incubation with a solution of DAPI (10 �M)  for 30 min  to visual-
ize the DNA. HepG2 cells were stained by incubation with NAO

Table 1
Coefficients of the Chebyshev polynomial model (rows, Eq. (4)) corresponding to the regression coefficients of the variance model (columns, Eq. (5)) at the respective bands
of  the wavelet decomposition transform.

Wav. tr. band HH HL LH

Ch. cf, (Eq. (4))/R.
cf (Eq. (5))

C D E C D E C D E

a 2.45E+00 8.12E−01 −4.39E−03 1.48E+01 4.74E−01 −9.14E−03 1.54E+01 4.61E−01 −1.06E−02
b  −2.36E−01 6.31E−02 1.82E−03 2.24E−01 7.03E−02 1.43E−03 2.61E−01 6.88E−02 1.62E−03
c  −7.22E−01 1.71E−01 2.27E−04 1.52E+00 2.64E−01 −6.75E−03 1.96E+00 2.62E−01 −7.95E−03
d  1.52E−02 −1.33E−02 −4.54E−04 −1.11E−01 −6.90E−03 −2.49E−04 −1.09E−01 −6.54E−03 −2.87E−04
e  2.21E−01 −9.31E−02 −9.62E−04 −1.16E+00 −6.60E−02 7.63E−04 −1.25E+00 −6.32E−02 8.98E−04
f  −5.12E−02 −5.03E−02 1.23E−03 −1.60E+00 −1.17E−02 1.68E−03 −1.64E+00 −9.75E−03 1.89E−03
g  2.12E−05 3.28E−03 1.36E−04 1.61E−02 1.29E−03 6.95E−05 1.60E−02 1.32E−03 7.07E−05
h  −2.01E−02 2.33E−02 4.30E−04 2.24E−01 8.74E−03 1.43E−04 2.34E−01 8.09E−03 1.55E−04
i  −7.74E−03 4.55E−02 −4.96E−04 7.90E−01 9.89E−03 −5.59E−04 8.06E−01 8.88E−03 −6.41E−04
j  6.94E−02 9.15E−03 −4.66E−04 2.55E−01 −1.13E−02 2.30E−04 2.29E−01 −1.13E−02 2.83E−04
k  −4.07E−05 −5.77E−04 −3.94E−05 1.81E−04 −3.42E−04 −1.62E−05 −2.34E−03 −2.82E−04 −1.43E−05
l  1.48E−03 −5.14E−03 −1.81E−04 −3.33E−02 −1.80E−03 −7.97E−05 −2.82E−02 −1.74E−03 −9.52E−05
m  1.87E−03 −1.38E−02 5.77E−06 −1.59E−01 −2.36E−03 1.21E−05 −1.56E−01 −2.19E−03 6.13E−06
n  −4.16E−02 −1.44E−02 4.53E−04 −2.46E−01 2.98E−03 5.23E−05 −2.35E−01 2.92E−03 2.50E−05
o  −2.52E−02 7.60E−04 5.15E−05 5.54E−02 3.24E−03 −1.58E−04 6.16E−02 3.05E−03 −1.81E−04
p  −6.93E−04 1.99E−04 2.33E−05 1.17E−03 8.64E−05 −2.82E−09 −7.97E−04 1.15E−04 1.71E−05
q  5.07E−05 1.47E−03 7.13E−05 1.65E−03 6.70E−04 4.26E−05 2.44E−03 6.10E−04 3.29E−05
r  1.11E−03 4.10E−03 5.34E−05 3.12E−02 8.49E−04 2.63E−05 3.18E−02 8.66E−04 8.49E−06
s  1.04E−02 6.53E−03 −1.08E−04 7.52E−02 −9.64E−05 1.50E−06 7.67E−02 −1.49E−04 −2.20E−05
t  3.16E−02 2.49E−03 −1.64E−04 2.94E−02 −1.82E−03 3.98E−05 2.24E−02 −1.58E−03 4.13E−05
u  6.03E−03 −1.09E−03 1.34E−05 −3.69E−02 −1.35E−04 3.20E−05 −3.70E−02 −4.64E−05 2.96E−05
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