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a  b  s  t  r  a  c  t

Multichannel  wireless  neural  signal  recording  systems  are a  prominent  topic  in  biomedical  research,  but
because  of several  limitations,  such  as  power  consumption,  the  device  size,  and  enormous  quantities
of  data,  it  is  necessary  to  compress  the  recorded  data.  Compressed  sensing  theory  can  be  employed  to
compress  neural  signals.  However,  a neural  signal  is  usually  not  sparse  in  the  time  domain  and  contains
a  large  number  of  similar  non-zero  points.  In this  article,  we propose  a new  method  for  compressing  not
only  a sparse  signal  but  also  a non-sparse  signal  that  has  identical  points.  First,  several  concepts  about  the
identical  items  of  the  signal  are  introduced;  thus,  a method  for  constructing  the  Minimum  Euclidean  or
Manhattan  Distance  Cluster-based  (MDC)  deterministic  compressed  sensing  matrix  is  given.  Moreover,
the  Restricted  Isometry  Property  of  the  MDC  matrix  is  supported.  Third,  three groups  of  real  neural
signals  are  used  for  validation.  Six  different  random  or deterministic  sensing  matrices  under  diverse
reconstruction  algorithms  are  used  for the  simulation.  From  the  simulation  results,  it  can  be demonstrated
that  the  MDC  matrix  can  largely  compress  neural  signals  and  also  have  a small  reconstruction  error.  For
a six-thousand-point  signal,  the  compression  rate  can  be up  to 98%,  whereas  the  reconstruction  error  is
less than  0.1.  In addition,  from  the  simulation  results,  the  MDC  matrix is optimal  for  a  signal  that  has
an  extended  length.  Finally,  the  MDC  matrix  can  be  constructed  by  zeros  and  ones;  additionally,  it has  a
simple  construction  structure  that  is highly  practicable  for  the  design  of  an implantable  neural  recording
device.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Over the past several years, neural recording and stimulation
systems have contributed substantial benefit to patients who  suffer
from Parkinson’s disease, major depressive disorder, and epilepsy
[1,2]. However, research and applications demand an increasing
number of requirements, which implies more requirements for
the neural recording system. These requirements include having
high-density integration of the recording electrodes [3,4] (now,
to our knowledge, a neural recording system can integrate more
than a thousand electrodes [5]), low temperature (an increase in
the temperature of the cortex must be smaller than one centi-
grade, which means that the maximum power density should be
0.8 mW/mm2 for the exposed tissue area [6]), long device lifetime,
and small device size. Among all of these requirements, the power
consumption is one of the most challenging issues. In a patient
who requires an implantable medical device, there must be limit

∗ Corresponding author. Tel.: +1 5143404711x7834.
E-mail addresses: linande1986@gmail.com, nan.li@polymtl.ca (N. Li).

to the frequency of replacing the batteries to both reduce the cost
of the surgeries and improve the quality of life. For example, if
there is a portable battery that has an energy density in the range
of 1 W-h/cm3, a battery volume on the order of 10 �W average
power per cubic centimeter is required for a 10-year device life
span [7]. Moreover, many of the implantable devices integrate a
wireless transmission part, which aggravates the situation of hav-
ing stringent energy constraints, because large amounts of recorded
data required a very high carrier frequency, which substantially
increases the power consumption of the device [8–10]. A com-
mon  ultra-wideband (UWB) radio exhibits energy-efficiencies in
the nJ/bit range, whereas the power consumption of the other
components is 103 times less than that of the UWB  radio [7]. There-
fore, a data reduction strategy for an implantable device should be
employed to minimize the power consumption of the system.

Most of existing methods for implementing integrated data
compression under these constraints involves detecting neural
spikes [11,12] or extracting the data features of the signal [13,14].
However, both of these methods cause distortion or loss of the data
information. For example, in a neural spike-detection recorder, the
data are obtained only in a time series or as an impulse signal but
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not as the signal itself [15]. If the thresholds of the detection are
not properly set, then the spikes cannot be detected. At the same
time, the feature extraction requires a period of time to train. Based
on this method, the precision usually cannot be guaranteed, and
the hardware design is also complicated [16]. Therefore, we must
find a new method that does not lose the details of the signal to
accomplish the goal of recording the signal.

Compressed sensing (CS) technology gives us a new choice for
signal compression. In recent years, this approach has attracted
considerable attention in the areas of computer science, applied
mathematics and electrical engineering [17,18]. CS constitutes a
revolution over the traditional Nyquist sampling frequency (Shan-
non theory). CS technology can be divided into three main parts:
sparse signal, signal reconstruction and sensing matrix.

1.1. Sparse signal

CS theory is based on the sparsity of the signal. If a signal Y, which
can be found in a basis such as V = [v1, v2, v3, . . .,  vn] has a sparse
representation, then the signal is called a sparse signal. Specifically,
suppose Y can be described as in the following equation:

Y = VX or Y =
n∑

i=1

xivi (1)

where xi is the coefficient vector for Y under the basis V. If Y is sparse,
then the coefficient xi must be almost zero or negligible, and as a
result, they can be omitted without any loss.

If a signal is sparse under some basis, then it can be regarded as
a compressible signal. Usually, a signal is not sparse, but if the basis
can be changed, then the sparse representation under the new basis
can be obtained. For example, a sine wave is not sparse in the time
domain, but it is sparse in the Fourier domain.

1.2. Signal reconstruction

There are many reconstruction methods; an example is the �1(or
�2) norm-based reconstruction method, which searches for the
minimum �1(or �2) value to construct the signal [19,20]. This type
of algorithm includes the basic pursuit algorithm (BP), match pur-
suit algorithm (MP), orthogonal matching pursuit algorithm (OMP)
[21,22], and threshold-based method (such as the iterative hard
or soft thresholding algorithm [22,23]). Probability-based recon-
struction methods constitute another type; for example, the sparse
Bayesian method uses the maximum likelihood to reconstruct the
signal [24,25]. As of now, it has been proven that for a k-sparse sig-
nal, if the order of the measurement is 2k, the original signal can be
recovered exactly [26].

1.3. Sensing matrix

Not all of the signals are sparse, and the “sparse” basis is usu-
ally difficult to find. Although the “sparse” basis of a signal can be
found, how to implement it into a device is still difficult [27]. To
compress the non-sparse signal, we introduce a new concept for
the compressed sensing, which is that not only the zero points in
a signal can be compressed but also the identical non-zero points
in the signal can be compressed. Therefore, in this article, we  con-
struct a deterministic sensing matrix that is based on this idea to
compress the neural signals.

The sensing matrix can be divided into two  types: random
and deterministic matrices. Currently, most of the designers use
a type of random matrix as a sensing matrix in the system, such
as the sub-Gaussian sensing matrix [7,15] or the random discrete
Fourier transmission matrix [28]. However, the random matrix has
disadvantages. First, storing the random matrix requires a large

amount of space, and the effectively proven random sensing matri-
ces require items with superior randomness, which causes there
to be stringent requirements for the design of a random number
generator. Moreover, a random number generator aggravates the
complexity of the hardware design, especially for an implantable
device, because the generator usually has large power consump-
tion and a large silicon area. Therefore, the current random sensing
matrices are not the best choice for an implantable hardware
design.

In addition, a deterministic sensing matrix is discussed as an
optional type of sensing matrix. The advantage of the deterministic
matrix is that it can generate the items of the sensing matrix on
the fly without storing the data, and it is also easy to reconstruct
the original signal. However, current deterministic sensing matri-
ces, such as the Discrete Chirp sensing matrix [29], the Reed Muller
sensing matrix [30], and the BCH sensing matrix [31], are also com-
plicated with respect to the hardware implementation, and they
cannot be used for a non-sparse or low-sparse signal; although a
low-density parity-check (LDPC) matrix contains only 0’s and 1’s,
the compression of a non-sparse or low-sparse signal requires a
very high-girth sensing matrix that is very difficult to generate
[32,33]. Therefore, a novel deterministic sensing matrix must be
constructed.

Moreover, there are two  important contributions in this article.
First, we  use the similarity that is in a signal to construct the com-
pression. In fact, a specific neural signal may  contain many identical
(or similar) points, and traditional compressed sensing concerns
only the zero items in a signal; it does not concern two identical (or
similar) non-zero points in the signal. Therefore, we  research these
identical or highly similar non-zero points, i.e., the similarity of
the points in a signal, from the perspective of compressed sensing
theory. Additionally, we  use the advantages of the deterministic
sensing matrix to construct a sensing matrix that is based on the
clustering of the neural signal itself. In brief, the primary contri-
bution of this article is that we design a deterministic compressed
sensing matrix to compress non-sparse or low-sparse signals that
have identical non-zero points, and the compressed signals can be
largely recovered.

To illustrate our work, we  give definitions and proof for the MDC
sensing matrix in Section 2. We introduce the dataset of the sim-
ulation in Section 3. The simulation results and a discussion based
on the MDC  sensing matrix are given in Section 4. Finally, in Section
5, we  provide a conclusion.

2. Minimum Euclidean or Manhattan distance
cluster-based deterministic sensing matrix

First, we provide the definitions of several basic concepts and the
method of MDC  matrix construction. (Some important variables or
symbols are illustrated in Table 1).

The most important concept in compressed sensing theory is
the Restricted Isometry Property (RIP), which is shown as follows.

Restricted Isometry Property An M × N sensing matrix  ̊ is said
to satisfy the Restricted Isometry Property of order k if it satisfies
the following equation:

(1 − εk)||X||22 ≤ ||˚X||22 ≤ (1 + εk)||X||22 (2)

for all of the k-sparse vectors X. The restricted isometry constant εk
of matrix  ̊ lies between 0 and 1. The restricted isometry constant
εk, k ∈ (1,n) of sensing matrix  ̊ is defined as below:

εk(˚) = max
|T |≤k

||˚∗
T ˚T − I

RT || = max
|T |=�k�

||˚∗
T ˚T − I

RT || (3)

where the maximum is over all of the subsets T ⊆ [n] with |T| ≤ [k]
or |T| = [k], and ˚T means all M × k sub-matrices of ˚.
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