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a b s t r a c t

Musculoskeletal modeling can predict muscle forces and the resulting motion and loading during human
ambulatory activities. A better understanding of the loading environment on hard and soft tissues can
enhance our understanding of ligament injury and prevention, tissue engineering, prosthetic design,
osteoporosis, and osteoarthritis. The current state-of-the-art in movement simulation is to use simplified
representation of the joints, such as representing the knee as a simple hinge joint. The aim of this study
is to produce data-driven surrogate models which effectively capture the complex three-dimensional
behavior of tibio-femoral joint interactions and that have the ease of use and computational efficiency
required for incorporation in existing neuromusculoskeletal simulations. In order to meet our objective,
we explored and compared the performance and sensitivity of nonlinear Hammerstein–Wiener, nonlin-
ear autoregressive, and time delay neural network models under different configurations, individually
and in ensembles. These models learned from solutions calculated by a validated multibody model of the
knee. Inputs to the surrogate models were positions and orientations of the tibia relative to the femur,
and the outputs were resulting forces and torques at the tibia with respect to the femur. Models were
mixed using mean (sum) rule, weighted mean, and stacked generalization ensemble methods. It was
observed that individually, time delay neural network models performed better than other models with
normalized mean square errors between 0.0509 and 0.0889 on test data. Among the ensembles, stacked
generalization provided the best results reducing test errors by 13–40%.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The ability to predict loading on musculoskeletal system tis-
sues during dynamic activity is essential to our understanding
of ligament injury and prevention, tissue engineering, prosthetic
design, osteoporosis, and osteoarthritis [1–3]. With few exceptions,
the forces acting on musculoskeletal tissues cannot be directly
measured in vivo. Musculoskeletal modeling and movement simu-
lation can estimate individual muscle forces and provide insight to
motor control and joint loading. For example, the forward dynamics
method is commonly used in musculoskeletal modeling where the
neural command signal provides the model inputs [1,4]. The neu-
ral command is sent to muscle models that predict muscle forces
that are then applied to the bone. The neural command can come
from measured EMG (electromyography), but is often estimated by
optimization methods that predict the neural command through
iteration. As such, decreasing the computation time per simula-
tion can have a significant effect on overall computation time [5].
Body level musculoskeletal models typically involve simplifications
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of the joints, muscles, and motor control strategies [6] and the
knee is commonly represented as a hinge joint. But, real knees
experience translation in the sagittal plane and have significant
internal–external and varus–valgus rotation. Prediction of lower
limb behavior would be greatly enhanced by a model that incorpo-
rated the physiological force–displacement response of the knee.
In addition, the artificial constraints of an ideal hinge joint can alter
the muscle activation patterns predicted by the forward dynamics
and neural command optimization method. The goal of this work
is to identify and develop data-driven (black-box) surrogate mod-
els that are capable of describing the complex three-dimensional
behavior of tibio-femoral joint interactions with a computational
efficiency and ease of use necessary for incorporation in existing
movement simulation models. Specifically, this methodology will
be demonstrated by producing a subject specific nonlinear six-axis
displacement–force relationship in a compact format.

To meet the project objective, several nonlinear data-driven
models, including mixtures of models (multi-model ensembles),
were explored and compared. The solution set for black-box model
training consisted of relative motion between the tibia and femur
and the forces and torques required to produce this motion for a
multibody model of the tibio-femoral joint. This model included
representation of the ligaments crossing the joint and deformable
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contacts representing cartilage–cartilage interaction. The menisci
were not represented. After training, the inputs to black-box mod-
els were the positions and orientations of the proximal tibia relative
to the distal femur. The outputs were the resulting reaction forces
and torques experienced by the tibia from the motion. The devel-
oped tibio-femoral surrogate is analogous to a nonlinear six-axis
spring and is meant to be used within a musculoskeletal model of
the lower limb that also includes representation of muscles, ground
reaction forces, and a hip and ankle.

2. Methods

The datasets required to train the data-driven models were
generated using a multibody knee model. First, a computational
multibody model was created and validated against experimen-
tal measurements obtained from a cadaver knee (Section 2.1).
Force–displacement datasets were then generated by multibody
model simulations and a series of nonlinear, data-driven mod-
els were trained, validated, and tested using this data in order to
study different aspects of their performance (Section 2.2). Finally,
we compared these computationally efficient surrogate models in
order to identify architectures and configurations that are suitable
for capturing tibio-femoral dynamics (Section 3).

2.1. Data

A validated six degrees of freedom multibody model of a cadaver
knee provided the datasets for surrogate training, validation, and
testing. The multibody knee model was created in MD ADAMS (MSC
Software Corporation, Santa Ana, CA) using magnetic resonance
imaging to create the geometries of the femur, tibia, patella, artic-
ular cartilage, and ligaments of a cadaver knee (68-year-old left
female knee). A deformable contact law was defined between the
cartilage surfaces of the tibia and femur based on Hertzian con-
tact theory and functional cartilage properties [7]. The ligament
bundles were represented as nonlinear springs with insertions and
zero-strain lengths determined from experimental measurements
[8]. The multibody knee model was validated by comparing kine-
matics to an identically loaded cadaver knee. The knee model was
placed in a validated model of a dynamic knee loading machine
(Kansas Knee Simulator (KKS), University of Kansas, Lawrence, KS)
[9]. The KKS reproduces the net loading and motion of physiolog-
ical activities, such as walking, using five axes controlled through
servo-hydraulic actuators (quadriceps force, vertical force applied
at the hip, medial-lateral ankle force, ankle vertical torque, and
ankle flexion force) [10]. Experimental measurements collected
during testing of the cadaver knee included the forces produced
by the servo-hydraulic actuators of the machine and the resulting
motion of the femur, tibia, and patella. During simulation, the mea-
sured forces were applied to the model of the knee in the KKS and
the resulting predicted bone motion was compared to measured
bone motion. Once validated, the multibody model of the tibio-
femoral joint could be extracted from the knee and KKS model to
generate the force–displacement data required for the surrogate
training, validation, and testing. This step of creating and validating
the multibody model was done for two reasons: (1) reaction forces
at the tibio-femoral joint cannot be directly measured experimen-
tally, and (2) the multibody model can easily generate the large
amounts of force–displacement data needed for surrogate training.
The multibody model of the knee in the KKS was used to generate
the motion components of the datasets for surrogate modeling. The
simulated motion data extended well beyond the limited motion
data measured during experimental testing.

After validation, the model of the cadaver knee in the dynamic
knee simulator was used to generate the relative motion between

Fig. 1. A posterior view of the knee depicting the locations of tibia (TC) and femur
(FC) coordinate systems.

an anatomical coordinate system based on Grood and Suntay [11]
which was placed in the tibia (TC) and femur (FC) (Fig. 1). Exper-
imental testing of the cadaver knee in the KKS consisted of a
simulated 10 s walk cycle based on ISO specification 1243-1 [12].
The measured forces produced by the actuators of the dynamic
knee simulator during experimental testing provided the simula-
tion inputs to the knee and dynamic knee simulator model. The
relative motion between the TC and FC was recorded during the
simulated walk. Additional motion data was created by repeating
the 10 s walk profile and subjecting it to perturbations by applying
forces during simulation. The resulting motion data was not meant
to encompass the entire envelope of possible tibio-femoral motion,
but to provide a continuous and physiologically relevant envelop
of motion centered on the ISO walk profile.

Three different datasets were generated for the purpose of train-
ing, validating, and testing our data-driven surrogate models. Five
force profiles, fi(t) i = 1,2,. . .,5, were given as the input to the multi-
body model; namely 1: hip angle, 2: vertical force, 3: lateral force, 4:
vertical torque, and 5: ankle force. They were perturbed to include
multiple walking paces. The period of the walk cycle, T(t), was var-
ied by

T(t) = 10 + 2.5q sin
(

2�t

10p

)
(1)

where p and q were set to 190 and 1.75, 175 and 2.0, and 210 and
2.25 for training, validation and testing datasets, respectively.

Forces fi(t) provided to the model were generated by an nth
order Fourier series with nmax being 3 for hip angle, 5 for verti-
cal force, and 4 for remaining force profiles, using a randomized
sinusoidal phase angle. The histogram of induced residuals by this
method demonstrated an approximately normal distribution.
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Here, r is a uniformly distributed random number. The modified
phase term produced pseudo-random combinations of distur-
bances over the interval of the datasets, while keeping the inputs
to the model near the bounds of the ISO-described force profiles.
Cn and ϕn were cosine series’ amplitude and phase calculated from
the original ISO profile. Ji was equal to 1 for all but i = 2, i.e. vertical
force. The original profile for this force exhibited sudden fluctua-
tions in time that were poorly approximated using the same Ji and
nmax as other profiles. To improve this approximation, the order of
the Fourier series nmax was increased to 5 and J2 was set equal to
n to reduce the disturbance factor in each successive term. Addi-
tionally, as the knee joint remains in compression during a normal
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