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a  b  s  t  r  a  c  t

Wireless  telemonitoring  of  physiological  signals  is  an  important  topic in  eHealth.  In order  to reduce
on-chip  energy  consumption  and  extend  sensor  life, recorded  signals  are  usually  compressed  before
transmission.  In  this  paper, we adopt  compressed  sensing  (CS)  as a low-power  compression  framework,
and  propose  a  fast block  sparse  Bayesian  learning  (BSBL)  algorithm  to reconstruct  original  signals.  Exper-
iments  on  real-world  fetal  ECG  signals  and epilepsy  EEG  signals  showed  that  the proposed  algorithm
has  good  balance  between  speed  and  data  reconstruction  fidelity  when  compared  to state-of-the-art  CS
algorithms.  Further,  we  implemented  the  CS-based  compression  procedure  and  a  low-power  compres-
sion  procedure  based  on  a wavelet  transform  in  field  programmable  gate  array  (FPGA),  showing  that  the
CS-based  compression  can  largely  save  energy  and  other  on-chip  computing  resources.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Monitoring physiological signals via wireless sensor networks
is an important topic in wireless healthcare. One major challenge
of wireless telemonitoring is the conflict between huge amount of
data collected and limited battery life of portable devices [1–3].
Data need to be compressed [4,3] before transmission. Most phys-
iological signals are redundant, which means that they can be
effectively compressed [3] using transform encoders such as dis-
crete wavelet transform (DWT) based methods [5]. However, these
methods consist of sophisticated matrix–vector multiplication,
sorting and arithmetic encoding which subsequently drain the bat-
tery.

Compressed sensing (CS), [6], can recover a signal with less
measurements given that the signal is sparse or can be sparse
represented in some transformed domains. CS-based wireless tele-
monitoring technology [7–12] can thus be viewed as a lossy
compression method. The block diagram of a typical CS-based
wireless telemonitoring is shown in Fig. 1. Physiological signals
are firstly digitalized (Nyquist sampling) via an analog to digital
converter (ADC). Those digitalized samples are compressed by a
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simple matrix–vector multiplication and the results are transmit-
ted via wireless networks. At the data central, a CS algorithm is used
to recover original signals from the compressed measurements.

1.1. Overview of the compressed sensing

The basic goal of CS aims to solve the following underdeter-
mined problem:

min  ‖x‖1 s.t. y = ˚x, (1)

where x is the samples,  ̊ is the sensing matrix whose row number
is smaller than column number, and y is the compressed mea-
surements. ||x||1 is the �1 norm penalty of x, which prompts its
sparsity.

In practice, physiological signals are not sparse in the time
domain, therefore one often resorts to a transformed domain such
that x can be expressed as x = D� where D is a dictionary matrix
such that the representation coefficients � are much sparser than
x. The problem in (1) then becomes

min  ‖�‖1 s.t. y = (˚D)�, (2)

The signal can be reconstructed afterwards using x̂ = D�̂ with the
recovered coefficients �̂.  Most CS-based telemonitoring systems
[8,9] are build upon this model.
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Fig. 1. The diagram of a compressed sensing (CS) based wireless telemonitoring system.

Recent advance in CS algorithms is to incorporate physical infor-
mation [13–15] into the optimization procedure with the goal to
achieve better reconstruction performance. One structure widely
used is the block/group sparse structure [13,16–18], which refers
to the case when nonzero entries of a signal cluster around some
locations. Moreover, noticing intra-block correlation widely exists
in real-world signals, Zhang and Rao [13,19] proposed the block
sparse Bayesian learning (BSBL) framework. It showed superior
ability to recover block sparse signals or even non-sparse raw phys-
iological signals such as fetal ECG [11] and EEG signals [10].

1.2. Summary of contributions

BSBL algorithms [13] showed impressive recovery performance
on physiological signals such as ECG and EEG. However, these algo-
rithms derived so far are not fast and may  limit their applications.
The first contribution of our work is a fast implementation1 of
the BSBL framework using the fast marginalized (FM) likelihood
maximization method [20]. Experiments conducted on real-life
physiological signals showed that the proposed algorithm had sim-
ilar recovery quality as BSBL algorithms, but was  much faster.

Power consumption is a major concern in wireless telemonitor-
ing systems. Traditionally, the power consumption was evaluated
on a low-power microcontroller (MCU) [8]. However, MCU  does
not support fully parallel implementation and the power estimate
is affected by the coding style. In this work, we analyzed the power
consumption on field programmable gate array (FPGA). In FPGA, we
can implement the compressor in parallel and control the overall
activities. Only the logic cells related to the compression core are
implemented and the rest are holding reset. Therefore the power
estimate is more accurate. In the experiment, the CS-based com-
pressor was compared to a low-power DWT-based compressor
in terms of compression latency, the number of utilized on-chip
resources and power consumption. We  proved that the CS-based
architecture was more suitable for low-power physiological tele-
monitoring applications.

1.3. Outline and notations

The rest of the paper is organized as follows. Section 2 presents
the fast marginalized implementation of the BSBL algorithm and
Section 3 provides the simulation setup and evaluation metrics.
In Section 4 and Section 5, we conduct experiments on fetal ECG
(FECG) and EEG signals. The extracted FECGs and the epileptic
seizure classification results are used to evaluate the performance

1 The preliminary work of the developed algorithm is available in
http://arxiv.org/abs/1211.4909.

of CS. FPGA implementations and power consumption of the CS-
based and the DWT-based compression methods are given in
Section 6. Conclusion is drawn in the last section.

Throughout the paper, Bold letters are reserved for vectors x
and matrices X. Tr(·) computes the trace of a matrix and diag(A)
extracts the diagonal vector of the matrix A. (·)T is the transpose
operator. N(x; �, ˙) denotes a multivariate Gaussian distribution
with mean � and variance ˙.

2. The fast implementation of the BSBL framework

2.1. Overview of the BSBL framework [13]

A block sparse signal x has the following structure:

x = [x1, . . .,  xd1︸  ︷︷  ︸
xT

1

, . . .,  x1, . . .,  xdg︸ ︷︷  ︸
xT

g

]T , (3)

which means x has g blocks, and only a few blocks are nonzero. Here
di is the block size for the ith block. The BSBL algorithms [13] exploit
the block structure and the intra-block correlation by modeling the
signal block xi using the parameterized Gaussian distribution:

p(xi; �i, Bi) = N(xi; 0, �iBi). (4)

with unknown deterministic parameters � i and Bi. � i is a nonnega-
tive parameter controlling the block-sparsity of x and Bi is a positive
definite matrix modeling the covariance structure of xi. We  assume
that the blocks are mutually independent. Henceforth,

p(x; {�i, Bi}i) = N(x; 0, � ), (5)

where � denotes a block diagonal matrix with the ith principal
block given by � iBi.

The measurement noise is assumed to be independent and
Gaussian with zero mean and unknown variance ˇ−1. Thus the
measurement model is

p(y|x; ˇ) = N(y; ˚x, ˇ−1I). (6)

Given the signal model (5) and the measurement model (6), the
posterior p(x|y; {�i, Bi}i, ˇ) and the likelihood p(y|{�i, Bi}i, ˇ) can be
derived as follows:

p(x|y; {�i, Bi}i, ˇ) = N(x; �, ˙), (7)

p(y|{�i, Bi}i, ˇ) = N(y; 0, C) (8)

where  ̇ � (� −1 + ˚T ˇ˚)
−1

, � � ˙˚Tˇy and C � ˇ−1I + ˚� ˚T. To
estimate the parameters {�i, Bi}i and ˇ, the following cost func-
tion is used, which is derived according to the Type II maximum
likelihood [13]:

L({�i, Bi}i, ˇ) = −2 log p(y|{�i, Bi}i, ˇ) (9)
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