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a  b  s  t  r  a  c  t

Wavelets  have  proved  particularly  effective  for extracting  discriminative  features  in ECG  signal
classification.  In  this  paper,  we show  that  wavelet  performances  in  terms  of  classification  accu-
racy  can  be  pushed  further  by  customizing  them  for  the  considered  classification  task.  A  novel
approach  for  generating  the  wavelet  that  best  represents  the  ECG  beats  in  terms  of  discrimina-
tion  capability  is  proposed.  It  makes  use  of the  polyphase  representation  of  the  wavelet  filter  bank
and  formulates  the  design  problem  within  a  particle  swarm  optimization  (PSO)  framework.  Experi-
mental  results  conducted  on  the  benchmark  MIT/BIH  arrhythmia  database  with  the  state-of-the-art
support  vector  machine  (SVM)  classifier  confirm  the  superiority  in  terms  of  classification  accu-
racy  and  stability  of  the  proposed  method  over  standard  wavelets  (i.e.,  Daubechies  and  Symlet
wavelets).

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The electrocardiogram (ECG) signal represents the changes in
electrical potential during the cardiac cycle as recorded between
surface electrodes on the body [1].  The analysis of ECG sig-
nals can provide clinicians with valuable information about the
patient health condition. In this context, significant research efforts
have been devoted for developing automatic and fast arrhyth-
mia  diagnosis tools based on the processing and analysis of ECG
signals.

In the last two decades, wavelets have attracted a grow-
ing interest in many signal processing and analysis applications.
The main interesting feature of wavelets is their time-frequency
representation of the signal. They allow gaining a deep insight
of the signal at different scales and frequencies, and have
proved particularly successful both in ECG signal compression and
classification [1–13].

In the context of ECG signal classification which represents the
focus of this paper, several interesting works can be found in the lit-
erature. In particular, in [4],  Ince et al. proposed a feature extraction
technique that employs the translation-invariant dyadic wavelet
transform in order to effectively extract the morphological infor-
mation from ECG data. In [5],  Sahambi et al. presented an approach
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that uses a dyadic wavelet to characterize the ECG signal. To circum-
vent its high computational cost, they used digital signal processing
add-on cards. In [6],  a method for detecting premature ventric-
ular contraction (PVC) from the Holter system is proposed using
wavelet transform and fuzzy neural network. In [7],  Dickhaus et al.
addressed two questions: how are the recorded time courses of
the signals to be interpreted with regard to a diagnostic decision?
What are the essential features and how is the information hid-
den in the signals? Then they presented an example to identify
patients who  are at high-risk of developing ventricular tachycardia
(VT). In [8],  an approach to detect PVCs using a neural network with
weighted fuzzy membership functions is described. To discriminate
between normal and PVC beats, Lim et al. exploited wavelet coeffi-
cients. In [9],  a dyadic wavelet transform is used for extracting ECG
characteristic points. The local maxima of the wavelet modulus at
different scales are used to locate the sharp variation points of ECG.
The proposed algorithm first detects the QRS complex, then the T
wave, and finally the P wave. In [10], Khamene and Negahdaripour
proposed a solution that relies on the positions of singular points
(high peaks) of the ECG signal. Their method attempts to discrim-
inate between the singular points of the maternal and fetal ECGs,
both present in the composite abdominal signal. All the work is
carried out in the wavelet transformed space of the ECG signal. In
[11], Inan et al. presented an approach for classifying beats of a
large dataset by training a neural network classifier using wavelet
and timing features. They found that the fourth scale of a dyadic
wavelet transform with a quadratic spline wavelet together with
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the pre/post RR-interval ratio is very effective in distinguishing
normal and PVC from other beats. In [12], features extracted from
successive wavelet coefficient levels after wavelet decomposition
of signals of heart rate variability (HRV) from RR intervals and ECG-
derived respiration (EDR) from R waves of QRS amplitudes were
used as inputs to a support vector machine (SVM) classifier to recog-
nize obstructive sleep apnea syndrome. In [13], Senhaji et al. raised
an important question: what is the most appropriate wavelet to
use? The answer was: there is no theoretical answer at the moment
and the choice must be done empirically by comparing results of
different wavelets.

All the aforementioned works made use of wavelets which
have been derived for general signal processing and analysis.
However, we  believe that in order to improve wavelet perfor-
mances in ECG classification, one should design wavelets that
are optimized for this specific problem. This paper is intended to
propose a wavelet design method which is driven by the clas-
sification process performance in terms of accuracy. Due to the
very complex relationship characterizing the wavelet and the clas-
sifier accuracy, we resort to a stochastic design method based
on particle swarm optimization (PSO) which has proved capa-
ble to provide effective answers to problems raised by various
applications [14–16].  The proposed method exploits the polyphase
representation of the discrete wavelet transform (DWT). Such rep-
resentation allows generating a wavelet filter bank from a set
of angular parameters, and thus formulating the wavelet design
problem for ECG signal classification as a problem of estimat-
ing these parameters so that to maximize the classifier accuracy.
The kind of classification approach adopted in this work is the
state-of-the-art SVM classifier known for its high generalization
capability.

The remaining of this paper is organized as follows. Section 2
gives a general review of wavelets. Sections 3 and 4 present the
main principles of PSO and SVM, respectively. Section 5 describes
the proposed wavelet design method. Experimental results are pro-
vided in Section 6. Finally, conclusions are drawn in Section 7.

2. Wavelets

The wavelet transform is a linear operation that decomposes
a signal into components that appear at different scales [1,5,17].
Wavelet functions � (t) are defined in a space of measurable func-
tions that are absolute and square integrable, i.e.,∫ +∞

−∞

∣∣� (t)
∣∣dt < ∞ (1)

∫ +∞

−∞

∣∣� (t)
∣∣2

dt < ∞ (2)

In such a space, they should satisfy conditions of zero mean and
square norm one [17]:∫ +∞

−∞
� (t)dt = 0 (3)

∫ +∞

−∞

∣∣� (t)
∣∣2

dt = 1 (4)

The wavelet transform of a function f(t) ∈ L2(R) at scale a and posi-
tion � is given by [5]:

Wf  (a, �) = 1√
a

∫ +∞

−∞
f (t)� ∗

(
t − �

a

)
dt (5)

The asterisk * denotes the complex conjugation.

Eq. (5) means that the signal to be analyzed f(t) is convolved
with stretched/dilated copies of the mother wavelet � (t). For
a < 1, the wavelet is contracted and the transform gives informa-
tion about the finer details of f(t). For a > 1, the wavelet expands
and the transform gives a coarse view of the signal. If the scale
parameter a = 2j with j ∈ Z, Z is an integer set, then the wavelet
is called a dyadic wavelet [17]. The wavelet transform operates
in continuous time on functions and in discrete time on vec-
tors. In continuous time, the wavelet coefficients are found by
evaluating the integral in (5).  Whereas, in discrete time, the coef-
ficients are found by passing a vector (x(n), n integer) through
a bank of two  filters, one is a low-pass and the other is a
high-pass.

A complete and interesting characterization of the DWT  filter
coefficients with compact support was presented by Daubechies in
[18]. However, in general, since looking for an optimum wavelet
is a problem-dependent issue, DWT  design can take many forms.
In this context, an elegant way to determine the coefficients of
a filter bank has been developed by Sherlock and Monro [19]. It
is a polyphase method [20] which relies on a factorization pro-
posed by Vaidyanathan [21]. Their algorithm allows deriving any
orthonormal perfect-reconstruction finite impulse response (FIR)
filter of arbitrary length. In the following, the method is briefly
described. The low-pass filter coefficients in the z-domain are
given by:

H0(z) =
2N−1∑
i=0

hiz
−i (6)

and thus

H0(z) =
N−1∑
i=0

h2iz
−2i + z−1

N−1∑
i=0

h2i+1z−2i (7)

In (7),  H0 is decomposed into even and odd powers of
z. Vaidyanathan proposed the following factorization of the
polyphase matrix [21]:

Hp(z) =
(

H00(z) H01(z)
H10(z) H11(z)

)
=

(
c0 s0

−s0 c0

) N−1∏
i=1

(
1 0
0 z−1

)(
ci si

−si ci

)
(8)

where

H00(z) =
N−1∑
i=0

h2iz
−2i (9)

and

H01(z) =
N−1∑
i=0

h2i+1z−2i (10)

H00(z) and H01(z) represent the polyphase components of the low-
pass filter, whereas H10(z) and H11(z) are those of the high-pass
filter. The coefficients ci and si are computed as follows: ci = cos(�i)
and si = sin(�i).

Sherlock and Monro developed a new formulation by rewriting
the factorization in a recursive form [19]:

H(k+1)
p (z) = H(k)

p (z)

(
1 0
0 z−1

)  (
ck sk

−sk ck

)
(11)
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