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a b s t r a c t

The brain–computer interface P300 speller is aimed to help those patients unable to activate mus-
cles to spell words by utilizing their brain activity. However, a problem associated with the use of
this brain–computer interface paradigm is the generation mechanics of P300 related to responses to
visual stimuli. Herein, we investigated the event-related potential (ERP) response for the P300-based
brain–computer interface speller. A signal preprocessing method integrated coherent average, principal
component analysis (PCA) and independent component analysis (ICA) to reduce the dimensions and noise
in the raw data. The time–frequency analysis was based on wavelet and two characteristic parameters
of event-related spectral perturbation (ERSP) and inter-trial coherence (ITC) were computed to indicate
the evoked response (time-locked) and phase reset (phase-locked) activity, respectively. Results demon-
strated that the proposed method was valid for the time-locked and phase-locked feature extraction and
both the evoked response and phase reset contributed to the genesis of the P300 signal. These electro-
physiological responses characteristics of ERPs would be used for BCI P300 speller design and its signal
processing strategies.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A brain–computer interface (BCI) provides alternative commu-
nication and control channels to convey messages and commands
from the brain to the external world [1], especially for those
patients with severe neurological or muscular diseases. At present,
electroencephalogram (EEG) is the major brainwave signal used by
non-invasive BCIs. One strategy of EEG-based BCI involves the use of
event related potential (ERP) that exploits the electrophysiological
responses to a certain event.

The most robust feature of the ERP is a positive displacement
occurring around 300 ms after stimulus, termed the P300 or P3 [2].
The P300 was first utilized in BCI as a speller [3]. A major techni-
cal problem in the P300-based BCI speller is the robustness of the
classification of the response from background noise to improve
the BCI system performance. Furthermore, it remains controver-
sial whether ERPs are generated by evoked response or by phase
reset with the outward stimulus [4]. ERP is traditionally consid-
ered to reflect transient, fixed latency, and fixed polarity evoked
responses to a stimulus [5–8]. In other words, the ERP has a time-
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locked relation with stimulation. Another competing view suggests
that at least part of the ERP is generated by a reorganization of
ongoing oscillations in the EEG; i.e., a portion of ongoing EEG to
a phase-locked relationship with stimulation. Non-additive pro-
cesses typical for a phase reset were recently shown to be involved
in the generation of the ERP [9], with the conclusion that phase
resetting existed in the human EEG, while phase concentration or
phase locking was observed in the alpha range EEG [10].

Importantly, many of arguments used to test the prediction of
the evoked and phase reset model have been argued for predictive
validation [11]. For example, a predictor of the phase reset model
is empirical evidence for phase concentration in the absence of a
power increase. While a reset of phase will not lead to a power
change, the superposition of an evoked response on background
EEG activity must lead to a power change. It was also suggested
that both phase and amplitude dynamics should be considered, as
both the evoked activity and phase reset of ongoing EEG activity
contribute substantially to the different auditory Go and NoGo ERP
components [12]. In this previous study [12], phase locking mainly
contributed to the exogenous ERP components, while evoked activ-
ity related to the cognitive processing mainly contributed to the
endogenous ERP components.

The aim of the present study was to investigate both the evoked
response (termed time-locked) and phase reset (termed phase-
locked) activities that contribute to the genesis of the P300 signal
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Fig. 1. Main components of event-related potentials, including exogenous compo-
nents and endogenous components. The P1, N1, P2, N2, and P3 (also termed P300)
are the main components.

in brain–computer interface speller. Two characteristic parameters
of event-related spectral perturbation (ERSP) and inter-trial coher-
ence (ITC) around 300 ms of the signal were applied to indicate the
evoked response and phase reset activity, respectively.

2. Materials and methods

ERP waveform consists of a sequence of positive and negative
voltage deflections [13], labeled as P1, N1, P2, N2, and P3 (also
termed P300) as shown in Fig. 1. The initial peak (P1) is an oblig-
atory sensory response that is elicited by visual stimuli without
cognitive processes. The P1 wave is strongly influenced by stim-
ulus parameters such as luminance. The early sensory responses
are called exogenous components to indicate their dependence on
external rather than internal factors. By contrast, the P300 wave
depends entirely on the task performed by the subject, and is not
directly influenced by the physical properties of the eliciting stimu-
lus. The P300 wave is therefore termed an endogenous component
to indicate its dependence on internal rather than external factors.

P300 as a constituent of the ERP is considered a potential BCI
control signal [14]. P300 is a positive EEG defection that occurs
during 200–700 ms (typically 300 ms) after stimulus onset, and is
typically recorded over the central-parietal scalp [15]. The response
is evoked by attention to rare stimuli in a random series of stimulus
events (i.e., the oddball paradigm). P300 was used in the BCI P300
speller system because it appears to be closely associated with the
cognitive processes. The system consists of stimulus, data acqui-
sition, feature extraction, pattern recognition, and result display
(Fig. 2). This study focuses on the feature extraction part.

2.1. Stimuli and data acquisition

We used the EEG dataset from Dataset IIb (P300 speller
paradigm) obtained from the BCI Competition 2003 data bank [16].
The signals (band-pass filtered from 0.1 to 60 Hz and digitized at
240 Hz) of 64 channels according to the standard electrode position
nomenclature of American electroencephalographic society were
collected from the subject in three sessions [16]. The first two ses-
sions are used to train the classifier. And the third session is use as
the test session. In this study, we only use the first two sessions to
extract the P300 feature. Each session consisted of a number of runs.
In each run, the subject focused attention on a series of characters.
And, totally there are 42 characters to be focused on.

For each character epoch, user display was as follows: the matrix
was displayed for a 2.5-s period, and during this time each character
had the same intensity (i.e., the matrix was blank). Subsequently,
each row and column in the matrix was randomly intensified
for 100 ms (i.e., resulting in 12 different stimuli of six rows and
six columns (Fig. 3). After intensification of a row/column, the
matrix was blank for 75 ms. Row/column intensifications were
block randomized in blocks of 12. The sets of 12 intensifications
were repeated 15 times for each character epoch (i.e., any spe-
cific row/column was intensified 15 times, resulting in 180 total
intensifications for each character epoch). Each character epoch
was followed by a 2.5-s period during which time the matrix was
blank. This period informed the user that this character was com-
pleted and to focus on the next character in the word that was
displayed on the top of the screen (the current character was shown
in parentheses).

We analyze the signals acquired from the stimulation to 1 s after.
For each character, it contains 15 blocks. And each block contains 12
trials (i.e. the stimulation of 6 rows and 6 columns). The sample rate
is 240 Hz with 64 channels. So for each character, a 64 × 180 × 240
matrix (64 channels × 15 blocks × 12 trials × 240 Hz) will be gener-
ated.

2.2. Data preprocessing and feature extraction

This process can be separated into two parts: preprocessing
and feature extraction. For preprocessing, the coherence average,
principal component analysis (PCA), and independent component
analysis (ICA) were used to reduce dimensions and improve sig-
nal to noise ratio (SNR). The time–frequency features were then
extracted and analyzed.

2.2.1. Data preprocessing
It would be difficult to identify the P300 in a single trial with-

out pre-processing. In this study, a Butterworth filter was used as
the low-pass filter with a cut-off frequency of 30 Hz. The signals
were then processed using coherence average, PCA and ICA by the
analysis tool EEGLAB 5.02 (http://sccn.ucsd.edu/eeglab/).

Fig. 2. Major components of the system. These components include (a) the stimulus, where the subject responds to different stimulus in their EEG, (b) data acquisition, (c)
data processing for extraction of the features of the signals, and (d) pattern recognition. The results are then displayed on a monitor.
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