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This paper presents a novel methodology to estimate the frequency shift in chirp signals with SNRs as 
low as −17 dB through the use of an adaptive array of Duffing oscillators. The system used here is an 
array of five Duffing oscillators with each oscillator’s response enhanced through a correlation with the 
reference signal. As a final result, a time-frequency depiction is provided by the Duffing array for further 
analysis of chirp signals.
Using computer simulated experiments, it is found that the analysis of chirp signals with low SNR by 
means of the Duffing oscillator shows a markedly better performance than the conventional methods 
of time-frequency analysis. To this end, the results obtained from the proposed Duffing method are 
compared against some recent techniques in time-frequency analysis.
Furthermore, to strengthen the proposed representation, Monte Carlo simulation is used.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Typically, detection and estimation of time-varying signals is 
done through time-frequency (TF) methodologies like those of 
short-time Fourier Transform, discrete wavelet transform and other 
more modern techniques like the Wigner and the Choi–Williams 
distributions [1]. However, all these TF techniques exhibit difficul-
ties when the time-varying signals under study have low SNRs, as 
in the case of chirp signals immersed in noise.

In recent years, detection of extraordinarily low SNR signals 
with a constant frequency has been reported using chaotic oscil-
lators [2–5] and specifically the Duffing oscillator [6–11]. The use 
of an array of Duffing oscillators has also permitted the detection 
of nonlinear time-varying frequencies under high levels of noise – 
with better results than those obtained from conventional TF tech-
niques – working with chirp signals in environments with very 
low SNRs [12]. This array approach presented a drawback due to 
its imprecise way of measuring changes in frequency.

In contrast, traditional and modern TF analysis techniques 
when used to measure signals whose frequency changes over 
time including the spectrogram, the continuous wavelet transform 
[13–15] and the Wigner distribution [16–18] have given very ac-
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curate results in high SNR scenarios, but they are all seriously 
impacted when the SNR is too low.

Here, and due to an improvement in measuring and detecting 
the transitions between the periodic and chaotic states of an ar-
ray of five, self-adjusting Duffing oscillators, this paper proposes a 
novel method for the analysis of chirp signals with very low SNR in 
the TF domain as an advantaged choice to the Choi–Williams dis-
tribution [1], and the Multiform Tiltable Exponential Distribution 
(MTED) [18].

Furthermore, the experimental comparison allowed noticing 
that there exist two inner limitations related to the Duffing oscil-
lator: i) Despite the published claims that the chaotic oscillator is 
immune to noise [6,9,11,14,19–23], it has a noise threshold under 
which the oscillator can work as a good detector; and ii) the array 
system oscillator also has a measuring threshold for the frequency 
variation ratio present in the chirp signal.

In what follows, Section 2 provides a short description of the 
Duffing oscillator chaotic behavior whereas Section 3 describes 
how such behavior is used to detect chirp signals in high levels 
of noise and how to obtain the corresponding parameter measure-
ments in the most precise form. Section 4 describes the proposed 
adaptive system that allows for the measurement of the instan-
taneous frequency variation of a highly dynamic single compo-
nent chirp signal within a large frequency range. Finally, Section 5
shows the experimental comparison, based on the relative MSE, 
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among the TF representations using the Choi–Williams distribu-
tion, the MTED and the proposed Duffing Adaptive System.

2. Duffing oscillator operation

The general Duffing oscillator can be modeled as the following 
non-linear differential equation [24]:

ÿ + 2ζ ẏ + μ ẏ3 + αy + γ y3 = 0 (1)

where y represents displacement, ζ is the damping ratio, μ is the 
non-linear damping coefficient, α is the linear stiffness and γ is 
the non-linear stiffness.

Analysis of the Duffing system under no external force using the 
homogeneous equation (1) gives 3 equilibrium points, one equi-
librium point at (yeq, ẏeq) = (0, 0), and two equilibrium points 
(yeq, ẏeq) = (±

√
− α

γ , 0) under two different conditions [24]:

i) One condition occurs when the stiffness coefficients, both lin-
ear and non-linear, have the same sign, that is αγ > 0.

ii) The other condition occurs when both stiffness coefficients 
have different signs, that is, αγ < 0.

Such analysis determines that the Duffing oscillator has a chaotic 
behavior if and only if all three equilibrium points are present. 
Further analysis shows that under all the above conditions, 
the Jacobian evaluated at the corresponding stability points re-
sulted in the non-linear damping element becoming null, that is, 
μ ẏ3

eq = 0.
Thus, working under such conditions, and when we apply an 

exciting force composed by the sum of two sinusoidal parts in the 
presence of additive noise n(t), equation (1) becomes

ÿ + 2ζ ẏ − αy + γ y3

= Fr cos(ωt) + A cos
[
(ω + �ω)t + ϕ

] + n(t) (2)

where Fr is the amplitude of a given single reference signal with 
the frequency ω chosen to be equal to the initial frequency of an 
applied input signal (amplitude A, arbitrary phase ϕ and a fre-
quency drift from the reference of �ω). The additive noise has 
standard deviation σ .

The operating principle of the oscillator is based on the 
frequency difference between the two involved signals in the 
equation: the proper reference signal of the Duffing Oscillator 
(Fr cos(ωt)) and the introduced external signal (A cos[(ω+�ω)t +
ϕ]).

A complete mathematical demonstration of such transitions is 
developed in [8] where it is also shown that the amplitude of the 
oscillator’s response is given by

F (t) =
√

F 2
r + 2Fr cos(�ωt + ϕ) + A2. (3)

When F (t) is smaller than a given but fixed Fo the oscillator 
exhibits a chaotic state, and when F (t) is bigger than Fo the os-
cillator presents its periodic state. Thus, Fo establishes a threshold 
for transitions between chaos and periodicity [23]. Furthermore, 
the frequency difference �ω can be estimated when calculating 
the time at which those transitions occur by means of

�T = 2π

�ω
. (4)

It has also been shown in [20] that any possible noise added to 
the system, does not affect such transitions and only affects the 
trajectory of the response, re-enforcing in this manner the chaotic 
intermittence behavior.

From equation (4), the period at which the transitions occur 
is inversely proportional to �ω, which allows a precise frequency 
measurement of the input signal even in the presence of noise. 
Therefore, measuring the period �T is one of the most important 
steps along the process.

It should be noted that the existing force for this case only con-
tains a single reference signal, thus limiting this development to 
single component signal applications.

With the purpose of detecting a signal with any frequency vari-
ation without necessarily modifying any parameter in equation (1)
when ω varies, it is convenient to apply a variable transformation 
[10] to the system equation, obtaining the state-space system de-
scribed by

{
ẋ = ωy
ẏ = ω

(−2ζ y + αx − γ x3 + Fr cos(ωt)
) (5)

It is worth noticing that the state equations (5) have the angular 
frequency ω as a factor and, therefore, the amplitude in the oscil-
lator response increases as ω increases [4,10,21,23] and this may 
cause a variation in the threshold between the two possible states. 
This, in turn, may cause the oscillator to fall off the chaotic inter-
mittence, making it impossible to estimate any dynamic frequency 
changes in the incoming signal. This has to be taken into consider-
ation when attempting to detect chirp signals.

In other words, frequency measurements work well for station-
ary frequency signals. However, our motivation is to verify that the 
Duffing oscillator can permit the measurement of time dependent 
frequency signals, specifically chirp signals.

3. Chirp detection with the Duffing oscillator

This section is intended to give the reader an idea of how it 
is possible to detect chirp signals using the Duffing oscillator, the 
main contribution of this research. We also explain how the system 
generates a time-frequency representation (TFR). It is important to 
note here that the proposed system has the ability to detect lin-
ear and nonlinear frequency variations and that these variations 
represent accelerations and decelerations or even changes in accel-
eration which, in fact, are more consistent with the Doppler Effect 
in real situations.

The Duffing oscillator working under a reference chirp signal 
whose frequency variation in time, represented by ω̇, is described 
by

ÿ + 2ζ ẏ − αy + γ y3

= Fr cos
(
ωt + ω̇t2) + A cos

[
(ω + �ω)t + (ω̇ + �ω̇)t2 + ϕ

]
+ n(t). (6)

To work with this type of signal it was assumed that the Duff-
ing oscillator is able to accurately detect the frequency of signals 
with linear phase variations operating under chaotic conditions as 
discussed under equation (5). Thus, it is possible to conceive a 
new time approach where the chirp signal is divided into small 
time windows short enough to assume that, within each window, 
the frequency can be considered constant. Furthermore, the se-
lection of the time window has to ensure that the variation of 
frequency does not take the oscillator out of the intermittence con-
dition.

To calculate the accepted frequency variation present in a win-
dowed linear chirp signal described by

X(t) =
{

cos(ωt + ω̇t2) for t < | T
2 |

0 otherwise
(7)
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