
Digital Signal Processing 55 (2016) 44–51

Contents lists available at ScienceDirect

Digital Signal Processing

www.elsevier.com/locate/dsp

Fast convolutional sparse coding using matrix inversion lemma

Michal Šorel ∗, Filip Šroubek

Institute of Information Theory and Automation, Czech Academy of Sciences, Pod Vodárenskou věží 4, 182 08 Prague 8, Czech Republic

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 3 May 2016

Keywords:
Convolutional sparse coding
Feature learning
Deconvolution networks
Shift-invariant sparse coding

Convolutional sparse coding is an interesting alternative to standard sparse coding in modeling shift-
invariant signals, giving impressive results for example in unsupervised learning of visual features. In
state-of-the-art methods, the most time-consuming parts include inversion of a linear operator related
to convolution. In this article we show how these inversions can be computed non-iteratively in the
Fourier domain using the matrix inversion lemma. This greatly speeds up computation and makes
convolutional sparse coding computationally feasible even for large problems. The algorithm is derived in
three variants, one of them especially suitable for parallel implementation. We demonstrate algorithms
on two-dimensional image data but all results hold for signals of arbitrary dimension.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Sparse coding methods learn a dictionary of basis vectors or
functions so that observed data could be expressed as a linear
combination of only a small number of these atoms [1]. Sparse
coding first appeared in neuroscience as a model of visual cortex
[2] but found applications in many classification and signal recon-
struction tasks. In machine learning sparsity avoids over-fitting and
can be thought of as a tool for feature extraction. In signal recon-
struction sparse coding can serve as a form of Bayesian prior for
image denoising [3], inpainting [4], deblurring [5], super-resolution
[6] and audio signal representation [7]. Although finding the dic-
tionary with which the training signals can be represented with
optimal sparsity is strongly NP-hard [8], there is a number of ef-
fective heuristic algorithms giving an approximate solution in poly-
nomial time [9,10]. Sparse coding is closely related to compressed
sensing [11], with results showing that for incoherent dictionaries
only a small number of projections is sufficient to exactly recon-
struct the original signal [12,13]. Efficient sparse coding algorithms
with provable guarantees appeared only recently [14–16].

In image processing applications, both the observed data and
dictionary atoms correspond to image patches. A fundamental dis-
advantage of sparse coding is the assumption that image patches
are independent, which typically leads to many atoms being trans-
lated versions of one another. The same issue can be expected in
audio signals. Convolutional sparse coding, also called shift-invariant
sparse coding [17–19], is an interesting alternative that found its

* Corresponding author.
E-mail addresses: sorel@utia.cas.cz (M. Šorel), sroubekf@utia.cas.cz (F. Šroubek).

use in audio classification [20], deconvolutional networks [21] and
predictive sparse coding by neural networks [22]. In contrast to
standard sparse coding that models a signal as a sparse combina-
tion of dictionary vectors, convolutional sparse coding models the
signal as a sum of several convolutions of kernels and sparse fea-
ture maps.

The goal of this article is to describe a new fast algorithm for
convolutional sparse coding. Our solution is based on the fact that
the main problem of state-of-the-art algorithms [21,23] is a time
consuming inversion of an operator related to convolution. This
problem was sidestepped in [24] by using FISTA [25], where the in-
version step is essentially replaced by one gradient descent step at
the cost of much larger number of iterations necessary to achieve
the same precision. In this paper, we adopt an approach close to
[23] but show how the most time-consuming step of their algo-
rithm can be computed non-iteratively in the Fourier domain using
the matrix inversion lemma, which greatly speeds up computation.
Derivation is relatively straightforward for one input signal [26] but
more complicated for multiple inputs [27]. As our main contribu-
tion, we show three solutions of the multiple-input case, which are
all equivalent for the single-input case. One of them is especially
suitable for parallel implementation. We also compare efficiency of
[21,23] and our algorithm under various conditions and demon-
strate the ability of the proposed algorithms to learn kernels at
several scales simultaneously. A paper using similar ideas to solve
the problem of convolution sparse coding from incomplete data
appeared recently in [28].

The rest of the paper is organized as follows. Sec. 2 states the
problem of convolutional sparse coding. Sec. 3 shortly explains
the main optimization tool we use, which is the alternating direc-

http://dx.doi.org/10.1016/j.dsp.2016.04.012
1051-2004/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.dsp.2016.04.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:sorel@utia.cas.cz
mailto:sroubekf@utia.cas.cz
http://dx.doi.org/10.1016/j.dsp.2016.04.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dsp.2016.04.012&domain=pdf

M. Šorel, F. Šroubek / Digital Signal Processing 55 (2016) 44–51 45

Table 1
Notation.

zk feature maps 1 . . . K
dk convolutional kernels 1 . . . K
K number of kernels and feature maps
N number of pixels
L number of input images
di

k kth convolution kernel for input image i used in the consensus
version of the algorithm

Zk, Dk operators corresponding to convolution with zk and dk

β parameter of convolutional sparse coding balancing sparsity
and accuracy

uz, ud ADMM auxiliary variables for feature maps and convolution
kernels

vz, vd ADMM dual variables
λ ADMM parameter
P number of ADMM iterations

tion method of multipliers. Algorithms are derived in Sec. 4. Time
complexity of the algorithms is summarized in Sec. 5 followed by
experiments in Sec. 6 and conclusions in Sec. 7.

2. Convolutional sparse coding

Building on the analogy with compressed sensing, where the
sparse representation is provably recoverable using l1 norm [13],
the convolutional sparse coding can be stated as a bi-convex prob-
lem

min
d,z

1

2

∥∥∥∥∥y −
K∑

k=1

dk ∗ zk

∥∥∥∥∥
2

+ β

K∑
k=1

‖zk‖1 s.t. ‖dk‖ ≤ 1, (1)

where y is an observed signal, zk are sparse feature maps and dk
corresponding convolution kernels. The number of convolution ker-
nels K and positive scalar β are user parameters. Complete list
of used variables is provided in Table 1. In this paper, we as-
sume circular boundary conditions, i.e. equivalence of convolution
with element-wise multiplication in the Fourier domain, therefore
the feature maps are of the same size and dimension as the ob-
served signal. Motivated by applications in learning visual features
and modeling image data, we use two-dimensional images in our
experiments but convolutional sparse coding can be applied to sig-
nals of arbitrary dimension.

Analogously to standard sparse coding and other machine
learning and signal modeling approaches, we are interested in
two different modes of operation. First we learn convolution ker-
nels from training data by solving the optimization problem (1) as
stated above. We call this phase kernel learning. Second, in feature
extraction phase, the kernels are fixed and features are computed
only by minimization over feature maps. Even though the terms
feature extraction and kernel learning come from machine learn-
ing, the same operations are important even for signal modeling
and reconstruction. The role of kernel learning is to estimate an
a priori signal distribution and feature extraction corresponds to
Bayesian inference from noisy measurements.

As in sparse coding [10,29], all efficient methods of kernel
learning in the literature [21,23,24] alternately minimize over the
feature maps zk while keeping the filters dk fixed and over the fil-
ters while keeping the feature maps fixed, taking the advantage
that both sub-problems are convex. In this way the feature ex-
traction is essentially run in each iteration of the kernel learning
algorithm.

3. Alternating direction method of multipliers

The main optimization tool we use in both convex sub-
problems, which was less efficiently used already in [23], is the
alternating direction method of multipliers (ADMM) [30]. Here

we present its simplified form, which is equivalent to Douglas–
Rachford splitting algorithm [31]. ADMM is a method to minimize
the sum of two convex not necessarily differentiable functions

min
x

f (x) + g(x). (2)

The algorithm is especially useful, if we can efficiently compute a
so-called proximal or proximity operator of both functions, defined
for f as

proxλ f (a) = arg min
x

λ f (x) + 1

2
‖x − a‖2 (3)

and similarly for g , where scalar λ > 0 is a parameter. ADMM con-
sists of iteratively executing three update steps

x ← proxλ f (v − u) (4)

v ← proxλg (x + u) (5)

u ← u + x − v (6)

two of them being computations of proximal operators for f
and g , and (6) is a simple update of an auxiliary variable. Stop-
ping criteria for ADMM are discussed in [30], Section 3.3.1.

4. Algorithm

In this section, we show that both convolutional sparse coding
sub-problems can be written as a sum of two functions suitable
for ADMM and derive how to efficiently compute their proximal
operators. The main difference with respect to [23] is much faster
computation of one of the proximal operators.

4.1. Minimization over feature maps

We start with the minimization of (1) over feature maps zi ,
which can be written in short as

min
z

1

2
‖y − Dz‖2 + β ‖z‖1 (7)

where D = [D1, . . . , D K] is an operator composed of convolutions
with K kernels dk and z = [

zT
1 , . . . , zT

K

]T
is a vector of vectorized

feature maps. K denotes the number of feature maps and β is a
parameter balancing model accuracy and sparsity of the represen-
tation. The number of elements in y will be denoted by N . Note
that from this place on, we use vector notation, where quantities
y, z, etc. are vectors and convolutions with dk and zk are expressed
as multiplications with circulant (for 2D data block-circulant) ma-
trices Dk and Zk , respectively.

This is a special case of l1-regularized linear regression also
called Lasso [32]. Authors of [21] solved (7) by a continuation ap-
proach, [23,33] used ADMM, decomposing (7) into two functions

f z(z) = 1

2
‖y − Dz‖2 and (8)

gz(z) = β ‖z‖1 . (9)

The proximal operator of l1 norm

arg min
x

α ‖x‖1 + 1

2
‖x − a‖2 (10)

is a very fast element-wise operation called soft thresholding [30]

proxα|x| (a) = Sα (a) =

⎧⎪⎨
⎪⎩

a − α a > α

0 |a| ≤ α

a + α a < α,

(11)

where in our case α = λβ .

Download English Version:

https://daneshyari.com/en/article/558344

Download Persian Version:

https://daneshyari.com/article/558344

Daneshyari.com

https://daneshyari.com/en/article/558344
https://daneshyari.com/article/558344
https://daneshyari.com

